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Abstract

An essential aspect to understanding narra-
tives is to grasp the interaction between char-
acters in a story and the actions they take.
We examine whether computational models
can capture this interaction, when both char-
acter attributes and actions are expressed as
complex natural language descriptions. We
propose role-playing games as a testbed for
this problem, and introduce a large corpus1 of
game transcripts collected from online discus-
sion forums. Using neural language models
which combine character and action descrip-
tions from these stories, we show that we can
learn the latent ties. Action sequences are bet-
ter predicted when the character performing
the action is also taken into account, and vice
versa for character attributes.

1 Introduction

Imagine a giant, a dwarf, and a fairy in a combat
situation. We would expect them to act differently,
and conversely, if we are told of even a few actions
taken by a character in a story, we naturally start
to draw inferences about that character’s person-
ality. Communicating narrative is a fundamental
task of natural language, and understanding nar-
rative requires modelling the interaction between
events and characters.2

In this paper, we propose that collaboratively-
told stories that arise in certain types of games pro-
vide a natural test bed for the problem of inferring
interactions between characters and actions in nar-
ratives. We present a corpus of role-playing game
(RPG) transcripts where characters and action se-
quences are described with complex natural lan-
guage texts. Table 1 shows an example character

1http://groups.inf.ed.ac.uk/cup/ddd/
2In this paper, the word character will always be used in

the sense of “character in a story” rather than the sense of
“character in a token”.

Character description
Name: Ana Blackclaw; Age: 27; Gender: Female
Appearance: Standing at a mighty 6’5, she is a giant
among her fellow humans. Her face is light, though
paler than the average man or woman’s, and is marked
by scars. ... Her body is muscular, as it would have
to be to carry both her armor and the hammer. Her
light grey eyes nearly always keep a bored expression.
Her canines seem a tad larger than the normal person’s.
Preferred Weapon: Hammer. Preferred Armor: Heavy.
Gift: Binoculars. Darksign: No.
Action description
She stopped dead in her tracks as the hissing began. A
grumble escaped her as it did so, and she looked over to
make sure the other woman was doing fine. Seeing that
all was not entirely well, she allowed herself to slide
down, her hand gripping the slope side once more to
slow herself. Once that was accomplished, she reached
out and grabbed the back of the girl’s neck, pulling her
back to steady herself. The giant remained silent as she
did so, and then glanced over to the nearby skeletons.
They would be upon them soon. Her grip tightened on
the hammer as she glanced from side to side. It would
not be a fun fight.

Table 1: Example descriptions from our RPG corpus

description, and an action text for the same char-
acter. This example shows how the ties between
characters and their actions are subtly present in
the text descriptions, and learning the latent ties
between them is a difficult task. Based on our cor-
pus, and using neural language models, this work
demonstrates an initial success on this problem.

The ability to understand and generate narra-
tives is a useful skill for natural language systems,
for example, to plan a coherent answer to a ques-
tion, or to generate a summary of a document.
Prior work on narrative processing has focused on
inducing disjoint sets of character and event types
(as topic models), capturing the relationship be-
tween characters in the same story, or extracting
character-action pairs as low level noun-verb tu-
ples. However, these models do not aim to match
or infer characters and actions from each other.

We make two contributions towards closing this
gap. We introduce a corpus of thousands of RPG
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transcripts and demonstrate predictive cues be-
tween characters and actions by building neural
language models with facility for adding side in-
formation. We show that a language model over
action text obtains lower perplexity when we also
make available a representation of the character
who produced each token. Likewise, a language
model for character descriptions benefits from in-
formation about the actions the character made.
Our findings open up new possibilities for making
sophisticated inference over narrative texts.

2 Related work

In work on narratives, both characters and actions
have received significant attention, albeit sepa-
rately. There is work on inducing types of char-
acters (Bamman et al., 2013, 2014) or relation-
ships between characters (Chang et al., 2009; El-
son et al., 2010; Chaturvedi et al., 2016; Iyyer
et al., 2016). Often these approaches are based
on probabilistic topic models or more recently dis-
tributed word representations computed by neural
networks. Others focus on learning regular and
repetitive event sequences in stories (Chambers
and Jurafsky, 2009; McIntyre and Lapata, 2009),
together with some information about the agent
of the actions. These extractions are fairly low-
level, in the form of noun-verb pairs. There are
also models for clustering stories either based on
their characters (Frermann and Szarvas, 2017), or
sentiment and topic (Elsner, 2012, 2015).

The above approaches mine types of actions
or characters. This work focuses on infering the
latent ties between actions and characters, and
whether one aspect can help predict the other.
Flekova and Gurevych (2015) present recent work
related to this latter idea. They classify characters
based on their speech and actions into an intro-
vert or extrovert class. In contrast, we focus on
attributes of characters and actions beyond such
coarse traits, and when these attributes are ex-
pressed as complex descriptions.

3 A corpus of RPG transcripts

Traditionally, RPGs are played orally with players
seated around a table. But there are also online
forums where users play RPGs by posting text de-
scriptions instead.

We collected a corpus of RPG threads from one
such website roleplayerguild.com. Here
each game play is recorded in two threads. In one

of these, each player posts a detailed text descrip-
tion of the role (character) she is going to play in
the game, which we call a character description.
This description includes the character’s physi-
cal appearance, personality, family background, as
well as special and supernatural powers, and pos-
sessions. A second thread consists of the actual
game play where each player contributes a post
when his turn comes. Each post describes how the
character that is assumed by that specific player
responds to the game situation. Thus the story de-
velops collaboratively. We call each post in the
story thread an action description. An example
from our corpus of a character description and an
action description is shown in Table 1.

A noteworthy aspect of these RPGs is that char-
acter attributes are determined by writing the de-
scriptions before the game starts. The story thread
itself then focuses predominantly on the actions
and does not reiterate character attributes. More-
over, we know unambiguously which character is
associated with each action post. Such mapped
pairs of clean character descriptions and associ-
ated actions would be difficult to obtain from nov-
els or other stories without sophisticated analysis.

Our corpus contains 1,544 RPGs spanning a va-
riety of themes—fantasy, apocalyptic, romance,
anime, military, horror, and adventure. There are
a total of 56,576 posts, comprising of 25.3M to-
kens. The maximum number of posts in a story
is 753, minimum 2, and the average is 26. Note
that many stories are in progress and some are long
running. There are 9,771 unique characters in the
corpus, and their descriptions amount to 8.5M to-
kens. There is a minimum of 1, average 6, and
maximum 24 characters in a single story.

Even though each character or action descrip-
tion focuses on a single character, it nevertheless
contains descriptions of background settings of the
scene, and interactions of other characters (eg. de-
scriptions of the parents of a character). Hence
we preprocess the texts to only retain parts most
related to the character in focus. To this end, in
character descriptions, we only keep those sen-
tences which mention the character’s name or the
personal pronouns ‘he’ or ‘she’. The use of pro-
nouns reflects an intuition that since the descrip-
tion is of one key character, the pronoun is most
likely to refer to this salient entity. We also take
sentences which mention personality describing
words such as ‘personality’, ‘skill’, ‘specialize’,
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‘ability’, ‘profile’, ‘talent’, etc., even when they
do not contain the name. For action descriptions,
we only keep sentences which start with the char-
acter’s name. We do not use pronouns since action
text may refer to other salient characters as well.

Finally, we replace the main character (contrib-
utor) of a post with an “ENT” (for entity) token.
Other proper names in a post are replaced with a
“NAME” token and numbers with a “NUM” to-
ken. We drop all punctuation and any text with
less than 5 tokens. After these preprocessing steps,
we have 1,439 stories containing 1.48M tokens for
action descriptions and 2.95M for characters.

4 Learning character-action interactions

We examine the feasibility of inferring character-
action interactions from text using neural language
models (LM) with side information.

4.1 ACTION and CHAR language models
The story line, that is, the full text of a story is the
token sequence X = x1...xK created by concate-
nating the tokens across all the action descriptions
of the story. The posts are taken in time order with-
out any mark for post boundaries. Let C be the set
of all characters in a story. For each character j,
we denote the character description as the token
sequence Cj = cj1 . . . cjm.

We build separate language models for action
sequences and for character descriptions. The ac-
tion sequence model is over the story lines (the se-
quence of all action descriptions in a story), i.e. X
as defined above. The character description model
is over individual character descriptions i.e., Cj .

First we describe the language model P (X) for
the story line. We hypothesize in this work that a
better model of X can be built by taking into ac-
count the character in focus for each individual ac-
tion description. First, a baseline recurrent neural
network (RNN) language model, which we denote
ACTION-LM, would be

hi = LSTM (hi−1,xi−1)

P (xi|x1 . . . xi−1) = softmax (Whvhi + bv)

Here xi−1 is the embedding of the input token
xi−1, and hi−1 is the hidden state which summa-
rizes the token sequence x1 . . . xi−2. LSTM com-
putes the next hidden state using an LSTM cell
(Hochreiter and Schmidhuber, 1997). The out-
put layer produces a probability distribution over
the LM vocabulary using weight matrix Whv ∈

R|V |∗|h| where |h| is the hidden size and |V | is the
vocabulary size; bv is the bias vector.

To take the character descriptions into account
when generating actions, we define a second
model ACTION-LMS which estimates

P (X|C) =
K∏

i=1

p(xi|zi, x1...xi−1, z1...zi−1),

where zl is a variable indicating which char-
acter produced the token xl. For this model, we
essentially augment the RNNs with the character
descriptions as side information. For each token
xl, the side information is the character descrip-
tion indicated by zl, i.e, Czl . We follow the ap-
proach by Mikolov and Zweig (2012), and Hoang
et al. (2016), where a feature embedding vector e
representing side information is input to both the
RNN’s hidden and output layers, or to one of them.
During development, we found that concatenating
the feature embedding with the token embedding
at the input layer, and with the hidden state at out-
put layer gave the best performance. More for-
mally, ACTION-LMS computes:

hi = LSTM

(
hi−1,

[
xi−1
ei

])

P (xi|x1 . . .xi−1) = softmax

(
Wrv

[
hi

ei

]
+ bv

)

where ei is a representation of the character which
produced the token xi. The hidden state hi−1 now
summarizes both the action tokens up to i− 2 and
the character information up to i − 1. The output
layer weight matrix is Wrv ∈ R|V |∗(|h|+|e|) where
|h| is the size of the RNN hidden unit, and |e| the
feature embedding size.

In our work, the feature embedding itself comes
from a feedforward neural network trained jointly
within the LM. This feature network takes as in-
put the average value of pretrained embeddings3

for the tokens in the character description (we re-
move stopwords4). This initial vector is passed
through hidden layers to yield the feature embed-
ding e (reminiscent of deep averaging networks by
Iyyer et al. (2015)).

The language models for character descriptions
are similar in structure. First, we call the un-
conditioned model P (Ci) for a character descrip-
tion Ci as CHAR-LM; this is again an LSTM lan-
guage model. Second, we implement CHAR-LMS

3300 dimension word2vec (Mikolov et al., 2013) embed-
dings trained on the 1 billion word Google News Corpus.

4We remove stopwords for side information only
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which estimates P (Ci|XCi), where XCi is the
subsequence of X only containing the tokens pro-
duced by Ci. We obtain this conditional proba-
bility based on the same architecture as ACTION-
LMS. Here the input to the feature neural network
is the average pretrained embeddings of the tokens
(without stopwords) in XCi .

4.2 Experiments

We randomly divide our corpus into 100 stories for
testing, 20 for development, and the rest, 1319 for
training. We compare the two ACTION language
models, based on a vocabulary size of 20,000, and
the CHAR models have a vocabulary of 10,000.

Some posts are long even after our filtering
steps, and create a winding story line when con-
catenated. So we also explore whether limits on
description lengths is useful. In ACTION models,
a limit of g means that only the first g words of
each post are concatenated to form X . For CHAR

models, only the first g words of the description
Ci is used as the sequence for the LM. The same
limit g is given to both the models with and with-
out side information. When using side informa-
tion, we can restrict the conditioning text as well,
to a maximum of h words. We tune these limit
parameters, as well as the number of hidden lay-
ers, hidden unit sizes and dropout probability on a
development set.

For the ACTION models, we set g to 100 words.
ACTION-LM uses 2 layers with 256 hidden units
each. ACTION-LMS has 1 layer with 256 hid-
den units for the feature network with h set to 25
words, and 1 layer with 50 units for the RNN part.
For the CHAR models, g = 200 words. CHAR-LM
has one hidden layer with 100 units. For CHAR-
LMS, the best network was the same as ACTION-
LMS but with h = 100 (the first 100 words of
all the action posts by that character are com-
bined as the side information). We apply a dropout
probability of 0.65, clip gradients at 5.0, and use
the Adam algorithm (Kingma and Ba, 2015) for
optimization. All our models can trained in an
hour, ACTION-LM with 14 epochs, CHAR-LM
62, ACTION-LMS 60 and CHAR-LMS 91 epochs.
We implemented the models in TensorFlow5.

4.3 Results

First, we provide examples of the patterns cap-
tured by ACTION-LMS and CHAR-LMS by sam-

5https://www.tensorflow.org

Action-LMS Model
Prime text: 〈bos〉 ENT called . . .

Char. context Generated continuation
small girl . . . her name 〈eos〉
cheerful
bulky male . . . out to the group 〈eos〉
hunter bow . . . over and walked over to the
forest large king had been making sure
fear afraid . . . her her brother 〈eos〉
angry irritated . . . back at name with her thick

road with disappointment 〈eos〉
brutal violent . . . out of ENT hard to help ENT

help ENT help ENT help 〈eos〉
school student . . . out in the way of the
romantic conversation 〈eos〉

Char-LMS Model
Prime text: 〈bos〉 ENT is . . .

Action context Generated continuation
appeared . . . a very young man who has a
disappeared flew few scars on his body 〈eos〉
walked looked . . . a very friendly person 〈eos〉
stayed
waited . . . a little girl who is a little girl

who is a little
pause stare . . . a very very young woman 〈eos〉
strike slap . . . a bad boy 〈eos〉
follow creep . . . a slim and slim but slim

physique 〈eos〉
Table 2: Samples from our language models

Model Train Dev Test
ACTION-LM 82.56 106.83 105.06
ACTION-LMS 57.38 94.95 96.91
CHAR-LM 69.45 118.78 106.12
CHAR-LMS 61.84 110.13 100.86

Table 3: Perplexities of our models

pling from the models (Table 2). For side informa-
tion, we use simple words (taken from the descrip-
tions in our test corpus) for closer examination.

For ACTION-LMS, we seed the story line with
the priming text “〈bos〉 ENT called”, where ENT
is the token in our vocabulary referring to the main
character of a post. 〈bos〉 is a beginning of sen-
tence marker. Different inputs for the condition-
ing character description are shown under “Char.
context”. We then sample from the LM follow-
ing a greedy approach taking the most likely to-
ken at each step until either the end token 〈eos〉 or
a maximum of 12 tokens is reached. The sample
is shown under “generated continuation”. Simi-
larly, we sample from CHAR-LMS where the se-
quence is first primed with “ENT is a”. We find
that both models capture interesting ties between
character attributes and actions. However, there is
much scope for improved models of generation.

In this work, we have focused on the possibility
of capturing the interactions. For that, we com-
pare the impact of side information using perplex-
ity on held-out data (Table 3). For both charac-
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ter and action LMs, adding side information leads
to a significant decrease in perplexity showing
that the interdependence between the two aspects
can be learned computationally. Again, there is
a lot of scope for improving the language mod-
els given that the development and test perplexities
are much higher than those during training.

5 Conclusions

We have proposed and demonstrated the feasi-
bility of capturing interactions between charac-
ters and their actions in stories. While our neu-
ral models show that the data can be better mod-
eled by combining both aspects, one might eventu-
ally want to infer a missing modality by sampling
or generation from the model. We plan to work
on these improvements for future work, and also
explore evaluation methods which go beyond lan-
guage model perplexities, and capture model as-
pects closer to the task and domain.
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