@inproceedings{tornblad-etal-2018-sensing,
title = "{S}ensing and Learning Human Annotators Engaged in Narrative Sensemaking",
author = "Tornblad, McKenna and
Lapresi, Luke and
Homan, Christopher and
Ptucha, Raymond and
Ovesdotter Alm, Cecilia",
editor = "Cordeiro, Silvio Ricardo and
Oraby, Shereen and
Pavalanathan, Umashanthi and
Rim, Kyeongmin",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Student Research Workshop",
month = jun,
year = "2018",
address = "New Orleans, Louisiana, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-4019/",
doi = "10.18653/v1/N18-4019",
pages = "136--143",
abstract = "While labor issues and quality assurance in crowdwork are increasingly studied, how annotators make sense of texts and how they are personally impacted by doing so are not. We study these questions via a narrative-sorting annotation task, where carefully selected (by sequentiality, topic, emotional content, and length) collections of tweets serve as examples of everyday storytelling. As readers process these narratives, we measure their facial expressions, galvanic skin response, and self-reported reactions. From the perspective of annotator well-being, a reassuring outcome was that the sorting task did not cause a measurable stress response, however readers reacted to humor. In terms of sensemaking, readers were more confident when sorting sequential, target-topical, and highly emotional tweets. As crowdsourcing becomes more common, this research sheds light onto the perceptive capabilities and emotional impact of human readers."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tornblad-etal-2018-sensing">
<titleInfo>
<title>Sensing and Learning Human Annotators Engaged in Narrative Sensemaking</title>
</titleInfo>
<name type="personal">
<namePart type="given">McKenna</namePart>
<namePart type="family">Tornblad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Lapresi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Homan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raymond</namePart>
<namePart type="family">Ptucha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cecilia</namePart>
<namePart type="family">Ovesdotter Alm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Silvio</namePart>
<namePart type="given">Ricardo</namePart>
<namePart type="family">Cordeiro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shereen</namePart>
<namePart type="family">Oraby</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Umashanthi</namePart>
<namePart type="family">Pavalanathan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyeongmin</namePart>
<namePart type="family">Rim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While labor issues and quality assurance in crowdwork are increasingly studied, how annotators make sense of texts and how they are personally impacted by doing so are not. We study these questions via a narrative-sorting annotation task, where carefully selected (by sequentiality, topic, emotional content, and length) collections of tweets serve as examples of everyday storytelling. As readers process these narratives, we measure their facial expressions, galvanic skin response, and self-reported reactions. From the perspective of annotator well-being, a reassuring outcome was that the sorting task did not cause a measurable stress response, however readers reacted to humor. In terms of sensemaking, readers were more confident when sorting sequential, target-topical, and highly emotional tweets. As crowdsourcing becomes more common, this research sheds light onto the perceptive capabilities and emotional impact of human readers.</abstract>
<identifier type="citekey">tornblad-etal-2018-sensing</identifier>
<identifier type="doi">10.18653/v1/N18-4019</identifier>
<location>
<url>https://aclanthology.org/N18-4019/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>136</start>
<end>143</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sensing and Learning Human Annotators Engaged in Narrative Sensemaking
%A Tornblad, McKenna
%A Lapresi, Luke
%A Homan, Christopher
%A Ptucha, Raymond
%A Ovesdotter Alm, Cecilia
%Y Cordeiro, Silvio Ricardo
%Y Oraby, Shereen
%Y Pavalanathan, Umashanthi
%Y Rim, Kyeongmin
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana, USA
%F tornblad-etal-2018-sensing
%X While labor issues and quality assurance in crowdwork are increasingly studied, how annotators make sense of texts and how they are personally impacted by doing so are not. We study these questions via a narrative-sorting annotation task, where carefully selected (by sequentiality, topic, emotional content, and length) collections of tweets serve as examples of everyday storytelling. As readers process these narratives, we measure their facial expressions, galvanic skin response, and self-reported reactions. From the perspective of annotator well-being, a reassuring outcome was that the sorting task did not cause a measurable stress response, however readers reacted to humor. In terms of sensemaking, readers were more confident when sorting sequential, target-topical, and highly emotional tweets. As crowdsourcing becomes more common, this research sheds light onto the perceptive capabilities and emotional impact of human readers.
%R 10.18653/v1/N18-4019
%U https://aclanthology.org/N18-4019/
%U https://doi.org/10.18653/v1/N18-4019
%P 136-143
Markdown (Informal)
[Sensing and Learning Human Annotators Engaged in Narrative Sensemaking](https://aclanthology.org/N18-4019/) (Tornblad et al., NAACL 2018)
ACL
- McKenna Tornblad, Luke Lapresi, Christopher Homan, Raymond Ptucha, and Cecilia Ovesdotter Alm. 2018. Sensing and Learning Human Annotators Engaged in Narrative Sensemaking. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 136–143, New Orleans, Louisiana, USA. Association for Computational Linguistics.