@inproceedings{vogler-etal-2019-lost,
title = "{L}ost in {I}nterpretation: {P}redicting {U}ntranslated {T}erminology in {S}imultaneous {I}nterpretation",
author = "Vogler, Nikolai and
Stewart, Craig and
Neubig, Graham",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1010/",
doi = "10.18653/v1/N19-1010",
pages = "109--118",
abstract = "Simultaneous interpretation, the translation of speech from one language to another in real-time, is an inherently difficult and strenuous task. One of the greatest challenges faced by interpreters is the accurate translation of difficult terminology like proper names, numbers, or other entities. Intelligent computer-assisted interpreting (CAI) tools that could analyze the spoken word and detect terms likely to be untranslated by an interpreter could reduce translation error and improve interpreter performance. In this paper, we propose a task of predicting which terminology simultaneous interpreters will leave untranslated, and examine methods that perform this task using supervised sequence taggers. We describe a number of task-specific features explicitly designed to indicate when an interpreter may struggle with translating a word. Experimental results on a newly-annotated version of the NAIST Simultaneous Translation Corpus (Shimizu et al., 2014) indicate the promise of our proposed method."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vogler-etal-2019-lost">
<titleInfo>
<title>Lost in Interpretation: Predicting Untranslated Terminology in Simultaneous Interpretation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolai</namePart>
<namePart type="family">Vogler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Craig</namePart>
<namePart type="family">Stewart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Simultaneous interpretation, the translation of speech from one language to another in real-time, is an inherently difficult and strenuous task. One of the greatest challenges faced by interpreters is the accurate translation of difficult terminology like proper names, numbers, or other entities. Intelligent computer-assisted interpreting (CAI) tools that could analyze the spoken word and detect terms likely to be untranslated by an interpreter could reduce translation error and improve interpreter performance. In this paper, we propose a task of predicting which terminology simultaneous interpreters will leave untranslated, and examine methods that perform this task using supervised sequence taggers. We describe a number of task-specific features explicitly designed to indicate when an interpreter may struggle with translating a word. Experimental results on a newly-annotated version of the NAIST Simultaneous Translation Corpus (Shimizu et al., 2014) indicate the promise of our proposed method.</abstract>
<identifier type="citekey">vogler-etal-2019-lost</identifier>
<identifier type="doi">10.18653/v1/N19-1010</identifier>
<location>
<url>https://aclanthology.org/N19-1010/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>109</start>
<end>118</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Lost in Interpretation: Predicting Untranslated Terminology in Simultaneous Interpretation
%A Vogler, Nikolai
%A Stewart, Craig
%A Neubig, Graham
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F vogler-etal-2019-lost
%X Simultaneous interpretation, the translation of speech from one language to another in real-time, is an inherently difficult and strenuous task. One of the greatest challenges faced by interpreters is the accurate translation of difficult terminology like proper names, numbers, or other entities. Intelligent computer-assisted interpreting (CAI) tools that could analyze the spoken word and detect terms likely to be untranslated by an interpreter could reduce translation error and improve interpreter performance. In this paper, we propose a task of predicting which terminology simultaneous interpreters will leave untranslated, and examine methods that perform this task using supervised sequence taggers. We describe a number of task-specific features explicitly designed to indicate when an interpreter may struggle with translating a word. Experimental results on a newly-annotated version of the NAIST Simultaneous Translation Corpus (Shimizu et al., 2014) indicate the promise of our proposed method.
%R 10.18653/v1/N19-1010
%U https://aclanthology.org/N19-1010/
%U https://doi.org/10.18653/v1/N19-1010
%P 109-118
Markdown (Informal)
[Lost in Interpretation: Predicting Untranslated Terminology in Simultaneous Interpretation](https://aclanthology.org/N19-1010/) (Vogler et al., NAACL 2019)
ACL