@inproceedings{schluter-2019-recurrent,
title = "Recurrent models and lower bounds for projective syntactic decoding",
author = "Schluter, Natalie",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1022/",
doi = "10.18653/v1/N19-1022",
pages = "251--260",
abstract = "The current state-of-the-art in neural graph-based parsing uses only approximate decoding at the training phase. In this paper aim to understand this result better. We show how recurrent models can carry out projective maximum spanning tree decoding. This result holds for both current state-of-the-art models for shift-reduce and graph-based parsers, projective or not. We also provide the first proof on the lower bounds of projective maximum spanning tree decoding."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schluter-2019-recurrent">
<titleInfo>
<title>Recurrent models and lower bounds for projective syntactic decoding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The current state-of-the-art in neural graph-based parsing uses only approximate decoding at the training phase. In this paper aim to understand this result better. We show how recurrent models can carry out projective maximum spanning tree decoding. This result holds for both current state-of-the-art models for shift-reduce and graph-based parsers, projective or not. We also provide the first proof on the lower bounds of projective maximum spanning tree decoding.</abstract>
<identifier type="citekey">schluter-2019-recurrent</identifier>
<identifier type="doi">10.18653/v1/N19-1022</identifier>
<location>
<url>https://aclanthology.org/N19-1022/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>251</start>
<end>260</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Recurrent models and lower bounds for projective syntactic decoding
%A Schluter, Natalie
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F schluter-2019-recurrent
%X The current state-of-the-art in neural graph-based parsing uses only approximate decoding at the training phase. In this paper aim to understand this result better. We show how recurrent models can carry out projective maximum spanning tree decoding. This result holds for both current state-of-the-art models for shift-reduce and graph-based parsers, projective or not. We also provide the first proof on the lower bounds of projective maximum spanning tree decoding.
%R 10.18653/v1/N19-1022
%U https://aclanthology.org/N19-1022/
%U https://doi.org/10.18653/v1/N19-1022
%P 251-260
Markdown (Informal)
[Recurrent models and lower bounds for projective syntactic decoding](https://aclanthology.org/N19-1022/) (Schluter, NAACL 2019)
ACL
- Natalie Schluter. 2019. Recurrent models and lower bounds for projective syntactic decoding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 251–260, Minneapolis, Minnesota. Association for Computational Linguistics.