@inproceedings{xiong-etal-2019-imposing,
title = "Imposing Label-Relational Inductive Bias for Extremely Fine-Grained Entity Typing",
author = "Xiong, Wenhan and
Wu, Jiawei and
Lei, Deren and
Yu, Mo and
Chang, Shiyu and
Guo, Xiaoxiao and
Wang, William Yang",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1084",
doi = "10.18653/v1/N19-1084",
pages = "773--784",
abstract = "Existing entity typing systems usually exploit the type hierarchy provided by knowledge base (KB) schema to model label correlations and thus improve the overall performance. Such techniques, however, are not directly applicable to more open and practical scenarios where the type set is not restricted by KB schema and includes a vast number of free-form types. To model the underlying label correlations without access to manually annotated label structures, we introduce a novel label-relational inductive bias, represented by a graph propagation layer that effectively encodes both global label co-occurrence statistics and word-level similarities. On a large dataset with over 10,000 free-form types, the graph-enhanced model equipped with an attention-based matching module is able to achieve a much higher recall score while maintaining a high-level precision. Specifically, it achieves a 15.3{\%} relative F1 improvement and also less inconsistency in the outputs. We further show that a simple modification of our proposed graph layer can also improve the performance on a conventional and widely-tested dataset that only includes KB-schema types.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xiong-etal-2019-imposing">
<titleInfo>
<title>Imposing Label-Relational Inductive Bias for Extremely Fine-Grained Entity Typing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wenhan</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiawei</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deren</namePart>
<namePart type="family">Lei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mo</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiyu</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoxiao</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="given">Yang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing entity typing systems usually exploit the type hierarchy provided by knowledge base (KB) schema to model label correlations and thus improve the overall performance. Such techniques, however, are not directly applicable to more open and practical scenarios where the type set is not restricted by KB schema and includes a vast number of free-form types. To model the underlying label correlations without access to manually annotated label structures, we introduce a novel label-relational inductive bias, represented by a graph propagation layer that effectively encodes both global label co-occurrence statistics and word-level similarities. On a large dataset with over 10,000 free-form types, the graph-enhanced model equipped with an attention-based matching module is able to achieve a much higher recall score while maintaining a high-level precision. Specifically, it achieves a 15.3% relative F1 improvement and also less inconsistency in the outputs. We further show that a simple modification of our proposed graph layer can also improve the performance on a conventional and widely-tested dataset that only includes KB-schema types.</abstract>
<identifier type="citekey">xiong-etal-2019-imposing</identifier>
<identifier type="doi">10.18653/v1/N19-1084</identifier>
<location>
<url>https://aclanthology.org/N19-1084</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>773</start>
<end>784</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Imposing Label-Relational Inductive Bias for Extremely Fine-Grained Entity Typing
%A Xiong, Wenhan
%A Wu, Jiawei
%A Lei, Deren
%A Yu, Mo
%A Chang, Shiyu
%A Guo, Xiaoxiao
%A Wang, William Yang
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F xiong-etal-2019-imposing
%X Existing entity typing systems usually exploit the type hierarchy provided by knowledge base (KB) schema to model label correlations and thus improve the overall performance. Such techniques, however, are not directly applicable to more open and practical scenarios where the type set is not restricted by KB schema and includes a vast number of free-form types. To model the underlying label correlations without access to manually annotated label structures, we introduce a novel label-relational inductive bias, represented by a graph propagation layer that effectively encodes both global label co-occurrence statistics and word-level similarities. On a large dataset with over 10,000 free-form types, the graph-enhanced model equipped with an attention-based matching module is able to achieve a much higher recall score while maintaining a high-level precision. Specifically, it achieves a 15.3% relative F1 improvement and also less inconsistency in the outputs. We further show that a simple modification of our proposed graph layer can also improve the performance on a conventional and widely-tested dataset that only includes KB-schema types.
%R 10.18653/v1/N19-1084
%U https://aclanthology.org/N19-1084
%U https://doi.org/10.18653/v1/N19-1084
%P 773-784
Markdown (Informal)
[Imposing Label-Relational Inductive Bias for Extremely Fine-Grained Entity Typing](https://aclanthology.org/N19-1084) (Xiong et al., NAACL 2019)
ACL
- Wenhan Xiong, Jiawei Wu, Deren Lei, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang. 2019. Imposing Label-Relational Inductive Bias for Extremely Fine-Grained Entity Typing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 773–784, Minneapolis, Minnesota. Association for Computational Linguistics.