@inproceedings{yu-wan-2019-avoid,
title = "How to Avoid Sentences Spelling Boring? Towards a Neural Approach to Unsupervised Metaphor Generation",
author = "Yu, Zhiwei and
Wan, Xiaojun",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1092",
doi = "10.18653/v1/N19-1092",
pages = "861--871",
abstract = "Metaphor generation attempts to replicate human creativity with language, which is an attractive but challengeable text generation task. Previous efforts mainly focus on template-based or rule-based methods and result in a lack of linguistic subtlety. In order to create novel metaphors, we propose a neural approach to metaphor generation and explore the shared inferential structure of a metaphorical usage and a literal usage of a verb. Our approach does not require any manually annotated metaphors for training. We extract the metaphorically used verbs with their metaphorical senses in an unsupervised way and train a neural language model from wiki corpus. Then we generate metaphors conveying the assigned metaphorical senses with an improved decoding algorithm. Automatic metrics and human evaluations demonstrate that our approach can generate metaphors with good readability and creativity.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-wan-2019-avoid">
<titleInfo>
<title>How to Avoid Sentences Spelling Boring? Towards a Neural Approach to Unsupervised Metaphor Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhiwei</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Metaphor generation attempts to replicate human creativity with language, which is an attractive but challengeable text generation task. Previous efforts mainly focus on template-based or rule-based methods and result in a lack of linguistic subtlety. In order to create novel metaphors, we propose a neural approach to metaphor generation and explore the shared inferential structure of a metaphorical usage and a literal usage of a verb. Our approach does not require any manually annotated metaphors for training. We extract the metaphorically used verbs with their metaphorical senses in an unsupervised way and train a neural language model from wiki corpus. Then we generate metaphors conveying the assigned metaphorical senses with an improved decoding algorithm. Automatic metrics and human evaluations demonstrate that our approach can generate metaphors with good readability and creativity.</abstract>
<identifier type="citekey">yu-wan-2019-avoid</identifier>
<identifier type="doi">10.18653/v1/N19-1092</identifier>
<location>
<url>https://aclanthology.org/N19-1092</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>861</start>
<end>871</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T How to Avoid Sentences Spelling Boring? Towards a Neural Approach to Unsupervised Metaphor Generation
%A Yu, Zhiwei
%A Wan, Xiaojun
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F yu-wan-2019-avoid
%X Metaphor generation attempts to replicate human creativity with language, which is an attractive but challengeable text generation task. Previous efforts mainly focus on template-based or rule-based methods and result in a lack of linguistic subtlety. In order to create novel metaphors, we propose a neural approach to metaphor generation and explore the shared inferential structure of a metaphorical usage and a literal usage of a verb. Our approach does not require any manually annotated metaphors for training. We extract the metaphorically used verbs with their metaphorical senses in an unsupervised way and train a neural language model from wiki corpus. Then we generate metaphors conveying the assigned metaphorical senses with an improved decoding algorithm. Automatic metrics and human evaluations demonstrate that our approach can generate metaphors with good readability and creativity.
%R 10.18653/v1/N19-1092
%U https://aclanthology.org/N19-1092
%U https://doi.org/10.18653/v1/N19-1092
%P 861-871
Markdown (Informal)
[How to Avoid Sentences Spelling Boring? Towards a Neural Approach to Unsupervised Metaphor Generation](https://aclanthology.org/N19-1092) (Yu & Wan, NAACL 2019)
ACL