@inproceedings{sen-etal-2019-word,
title = "Word-{N}ode2{V}ec: Improving Word Embedding with Document-Level Non-Local Word Co-occurrences",
author = "Sen, Procheta and
Ganguly, Debasis and
Jones, Gareth",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1109",
doi = "10.18653/v1/N19-1109",
pages = "1041--1051",
abstract = "A standard word embedding algorithm, such as word2vec and glove, makes a strong assumption that words are likely to be semantically related only if they co-occur locally within a window of fixed size. However, this strong assumption may not capture the semantic association between words that co-occur frequently but non-locally within documents. In this paper, we propose a graph-based word embedding method, named {`}word-node2vec{'}. By relaxing the strong constraint of locality, our method is able to capture both the local and non-local co-occurrences. Word-node2vec constructs a graph where every node represents a word and an edge between two nodes represents a combination of both local (e.g. word2vec) and document-level co-occurrences. Our experiments show that word-node2vec outperforms word2vec and glove on a range of different tasks, such as predicting word-pair similarity, word analogy and concept categorization.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sen-etal-2019-word">
<titleInfo>
<title>Word-Node2Vec: Improving Word Embedding with Document-Level Non-Local Word Co-occurrences</title>
</titleInfo>
<name type="personal">
<namePart type="given">Procheta</namePart>
<namePart type="family">Sen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debasis</namePart>
<namePart type="family">Ganguly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gareth</namePart>
<namePart type="family">Jones</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A standard word embedding algorithm, such as word2vec and glove, makes a strong assumption that words are likely to be semantically related only if they co-occur locally within a window of fixed size. However, this strong assumption may not capture the semantic association between words that co-occur frequently but non-locally within documents. In this paper, we propose a graph-based word embedding method, named ‘word-node2vec’. By relaxing the strong constraint of locality, our method is able to capture both the local and non-local co-occurrences. Word-node2vec constructs a graph where every node represents a word and an edge between two nodes represents a combination of both local (e.g. word2vec) and document-level co-occurrences. Our experiments show that word-node2vec outperforms word2vec and glove on a range of different tasks, such as predicting word-pair similarity, word analogy and concept categorization.</abstract>
<identifier type="citekey">sen-etal-2019-word</identifier>
<identifier type="doi">10.18653/v1/N19-1109</identifier>
<location>
<url>https://aclanthology.org/N19-1109</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1041</start>
<end>1051</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word-Node2Vec: Improving Word Embedding with Document-Level Non-Local Word Co-occurrences
%A Sen, Procheta
%A Ganguly, Debasis
%A Jones, Gareth
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F sen-etal-2019-word
%X A standard word embedding algorithm, such as word2vec and glove, makes a strong assumption that words are likely to be semantically related only if they co-occur locally within a window of fixed size. However, this strong assumption may not capture the semantic association between words that co-occur frequently but non-locally within documents. In this paper, we propose a graph-based word embedding method, named ‘word-node2vec’. By relaxing the strong constraint of locality, our method is able to capture both the local and non-local co-occurrences. Word-node2vec constructs a graph where every node represents a word and an edge between two nodes represents a combination of both local (e.g. word2vec) and document-level co-occurrences. Our experiments show that word-node2vec outperforms word2vec and glove on a range of different tasks, such as predicting word-pair similarity, word analogy and concept categorization.
%R 10.18653/v1/N19-1109
%U https://aclanthology.org/N19-1109
%U https://doi.org/10.18653/v1/N19-1109
%P 1041-1051
Markdown (Informal)
[Word-Node2Vec: Improving Word Embedding with Document-Level Non-Local Word Co-occurrences](https://aclanthology.org/N19-1109) (Sen et al., NAACL 2019)
ACL