
Proceedings of NAACL-HLT 2019, pages 1073–1094
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

1073

Linguistic Knowledge and Transferability of Contextual Representations
Nelson F. Liu♠♥∗ Matt Gardner♣ Yonatan Belinkov♦

Matthew E. Peters♣ Noah A. Smith♠♣
♠Paul G. Allen School of Computer Science & Engineering,

University of Washington, Seattle, WA, USA
♥Department of Linguistics, University of Washington, Seattle, WA, USA

♣Allen Institute for Artificial Intelligence, Seattle, WA, USA
♦Harvard John A. Paulson School of Engineering and Applied Sciences and

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
{nfliu,nasmith}@cs.washington.edu

{mattg,matthewp}@allenai.org, belinkov@seas.harvard.edu

Abstract

Contextual word representations derived from
large-scale neural language models are suc-
cessful across a diverse set of NLP tasks,
suggesting that they encode useful and trans-
ferable features of language. To shed light
on the linguistic knowledge they capture, we
study the representations produced by sev-
eral recent pretrained contextualizers (variants
of ELMo, the OpenAI transformer language
model, and BERT) with a suite of sixteen di-
verse probing tasks. We find that linear mod-
els trained on top of frozen contextual repre-
sentations are competitive with state-of-the-art
task-specific models in many cases, but fail on
tasks requiring fine-grained linguistic knowl-
edge (e.g., conjunct identification). To inves-
tigate the transferability of contextual word
representations, we quantify differences in the
transferability of individual layers within con-
textualizers, especially between recurrent neu-
ral networks (RNNs) and transformers. For in-
stance, higher layers of RNNs are more task-
specific, while transformer layers do not ex-
hibit the same monotonic trend. In addition, to
better understand what makes contextual word
representations transferable, we compare lan-
guage model pretraining with eleven super-
vised pretraining tasks. For any given task,
pretraining on a closely related task yields bet-
ter performance than language model pretrain-
ing (which is better on average) when the pre-
training dataset is fixed. However, language
model pretraining on more data gives the best
results.

1 Introduction

Pretrained word representations (Mikolov et al.,
2013; Pennington et al., 2014) are a key compo-
nent of state-of-the-art neural NLP models. Tra-
ditionally, these word vectors are static—a single

*Work done while at the Allen Institute for Artificial In-
telligence.

Figure 1: An illustration of the probing model setup
used to study the linguistic knowledge within contex-
tual word representations.

vector is assigned to each word. Recent work has
explored contextual word representations (hence-
forth: CWRs), which assign each word a vector
that is a function of the entire input sequence; this
enables them to model the use of words in context.
CWRs are typically the outputs of a neural net-
work (which we call a contextualizer) trained on
tasks with large datasets, such as machine trans-
lation (McCann et al., 2017) and language mod-
eling (Peters et al., 2018a). CWRs are extraordi-
narily effective—using them in place of traditional
static word vectors within the latest models leads
to large gains across a variety of NLP tasks.

The broad success of CWRs indicates that they
encode useful, transferable features of language.
However, their linguistic knowledge and transfer-
ability are not yet well understood.

Recent work has explored the linguistic knowl-
edge captured by language models and neural ma-
chine translation systems, but these studies often
focus on a single phenomenon, e.g., knowledge of
hierarchical syntax (Blevins et al., 2018) or mor-
phology (Belinkov et al., 2017a). We extend prior
work by studying CWRs with a diverse set of six-
teen probing tasks designed to assess a wide array
of phenomena, such as coreference, knowledge of
semantic relations, and entity information, among



1074

others. The result is a broader view of the linguis-
tic knowledge encoded within CWRs.

With respect to transferability, pretraining con-
textualizers on the language modeling task has
had the most empirical success, but we can also
consider pretraining contextualizers with other su-
pervised objectives and probing their linguistic
knowledge. We examine how the pretraining task
affects the linguistic knowledge learned, consider-
ing twelve pretraining tasks and assessing trans-
ferability to nine target tasks.

Better understanding the linguistic knowledge
and transferability of CWRs is necessary for
their principled enhancement through new en-
coder architectures and pretraining tasks that build
upon their strengths or alleviate their weaknesses
(Linzen, 2018). This paper asks and answers:

1. What features of language do these vectors
capture, and what do they miss? (§4)

2. How and why does transferability vary across
representation layers in contextualizers? (§5)

3. How does the choice of pretraining task affect
the vectors’ learned linguistic knowledge and
transferability? (§6)

We use probing models1 (Shi et al., 2016b;
Adi et al., 2017; Hupkes et al., 2018; Belinkov
and Glass, 2019) to analyze the linguistic infor-
mation within CWRs. Concretely, we generate
features for words from pretrained contextualiz-
ers and train a model to make predictions from
those features alone (Figure 1). If a simple model
can be trained to predict linguistic information
about a word (e.g., its part-of-speech tag) or a pair
of words (e.g., their semantic relation) from the
CWR(s) alone, we can reasonably conclude that the
CWR(s) encode this information.

Our analysis reveals interesting insights such as:

1. Linear models trained on top of frozen CWRs
are competitive with state-of-the-art task-
specific models in many cases, but fail on
tasks requiring fine-grained linguistic knowl-
edge. In these cases, we show that task-
trained contextual features greatly help with
encoding the requisite knowledge.

2. The first layer output of long short-term
memory (LSTM) recurrent neural networks
is consistently the most transferable, whereas
it is the middle layers for transformers.

1Sometimes called auxiliary or diagnostic classifiers.

3. Higher layers in LSTMs are more task-
specific (and thus less general), while the
transformer layers do not exhibit this same
monotonic increase in task-specificity.

4. Language model pretraining yields represen-
tations that are more transferable in general
than eleven other candidate pretraining tasks,
though pretraining on related tasks yields the
strongest results for individual end tasks.

2 Probing Tasks

We construct a suite of sixteen diverse English
probing tasks and use it to better understand the
linguistic knowledge contained within CWRs. In
contrast to previous studies that analyze the prop-
erties and task performance of sentence embed-
dings (Adi et al., 2017; Conneau et al., 2018, in-
ter alia), we specifically focus on understanding
the CWRs of individual or pairs of words. We re-
lease this analysis toolkit to support future work
in probing the contents of representations.2 See
Appendix A for details about task setup.

2.1 Token Labeling
The majority of past work in probing the inter-
nal representations of neural models has exam-
ined various token labeling tasks, where a decision
is made independently for each token (Belinkov
et al., 2017a,b; Blevins et al., 2018, inter alia). We
synthesize these disparate studies and build upon
them by proposing additional probing tasks.

The part-of-speech tagging (POS) task as-
sesses whether CWRs capture basic syntax. We
experiment with two standard datasets: the Penn
Treebank (PTB; Marcus et al., 1993) and the Uni-
versal Dependencies English Web Treebank (UD-
EWT; Silveira et al., 2014).

The CCG supertagging (CCG) task assesses
the vectors’ fine-grained information about the
syntactic roles of words in context. It is con-
sidered “almost parsing” (Bangalore and Joshi,
1999), since a sequence of supertags maps a sen-
tence to a small set of possible parses. We use
CCGbank (Hockenmaier and Steedman, 2007), a
conversion of the PTB into CCG derivations.

The syntactic constituency ancestor tagging
tasks are designed to probe the vectors’ knowledge
of hierarchical syntax. For a given word, the prob-
ing model is trained to predict the constituent la-

2http://nelsonliu.me/papers/
contextual-repr-analysis

http://nelsonliu.me/papers/contextual-repr-analysis
http://nelsonliu.me/papers/contextual-repr-analysis


1075

Figure 2: Annotated sentences from the STREUSLE
4.0 corpus, used in the preposition supersense disam-
biguation task. Prepositions are marked by boldface,
immediately followed by their labeled function. If ap-
plicable, ; precedes the preposition’s labeled role.
Figure reproduced from Schneider et al. (2018).

bel of its parent (Parent), grandparent (GParent),
or great-grandparent (GGParent) in the phrase-
structure tree (from the PTB).

In the semantic tagging task (ST), tokens are
assigned labels that reflect their semantic role in
context. These semantic tags assess lexical seman-
tics, and they abstract over redundant POS distinc-
tions and disambiguate useful cases within POS
tags. We use the dataset of Bjerva et al. (2016);
the tagset has since been developed as part of the
Parallel Meaning Bank (Abzianidze et al., 2017).

Preposition supersense disambiguation is the
task of classifying a preposition’s lexical seman-
tic contribution (the function; PS-fxn) and the se-
mantic role or relation it mediates (the role; PS-
role). This task is a specialized kind of word sense
disambiguation, and examines one facet of lexical
semantic knowledge. In contrast to the tagging
tasks above, the model is trained and evaluated
on single-token prepositions (rather than making
a decision for every token in a sequence). We
use the STREUSLE 4.0 corpus (Schneider et al.,
2018); example sentences appear in Figure 2.

The event factuality (EF) task involves la-
beling phrases with the factuality of the events
they describe (Saurı́ and Pustejovsky, 2009, 2012;
de Marneffe et al., 2012). For instance, in the fol-
lowing example reproduced from Rudinger et al.
(2018), “(1a) conveys that the leaving didn’t hap-
pen, while the superficially similar (1b) does not”.

(1) a. Jo didn’t remember to leave.
b. Jo didn’t remember leaving.

We use the Universal Decompositional Semantics
It Happened v2 dataset (Rudinger et al., 2018), and
the model is trained to predict a (non)factuality
value in the range [−3, 3]. Unlike the tagging tasks
above, this task is treated as a regression problem,

where a prediction is made only for tokens corre-
sponding to events (rather than every token in a
sequence). Performance is measured using Pear-
son correlation (r); we report (r× 100) so metrics
for all tasks fall between 0 and 100.

2.2 Segmentation
Several of our probing tasks involve segmentation
using BIO or IO tags. Here the model is trained to
predict labels from only a single word’s CWR.

Syntactic chunking (Chunk) tests whether
CWRs contain notions of spans and boundaries;
the task is to segment text into shallow constituent
chunks. We use the CoNLL 2000 shared task
dataset (Tjong Kim Sang and Buchholz, 2000).

Named entity recognition (NER) examines
whether CWRs encode information about entity
types. We use the CoNLL 2003 shared task dataset
(Tjong Kim Sang and De Meulder, 2003).

Grammatical error detection (GED) is the
task of identifying tokens which need to be edited
in order to produce a grammatically correct sen-
tence. Given that CWRs are extracted from models
trained on large amounts of grammatical text, this
task assesses whether embeddings encode features
that indicate anomalies in their input (in this case,
ungrammaticality). We use the First Certificate in
English (Yannakoudakis et al., 2011) dataset, con-
verted into sequence-labeling format by Rei and
Yannakoudakis (2016).

The conjunct identification (Conj) task chal-
lenges the model to identify the tokens that com-
prise the conjuncts in a coordination construction.
Doing so requires highly specific syntactic knowl-
edge. The data comes from the coordination-
annotated PTB of Ficler and Goldberg (2016).

2.3 Pairwise Relations
We also design probing tasks that examine
whether relationships between words are encoded
in CWRs. In these tasks, given a word pair w1, w2,
we input [w1, w2, w1�w2] into the probing model;
it is trained to predict information about the rela-
tion between the tokens (Belinkov, 2018).

We distinguish between arc prediction and arc
classification tasks. Arc prediction is a binary
classification task, where the model is trained to
identify whether a relation exists between two to-
kens. Arc classification is a multiclass classifica-
tion task, where the model is provided with two
tokens that are linked via some relationship and
trained to identify how they are related.



1076

For example, in the syntactic dependency arc
prediction task, the model is given the representa-
tions of two tokens (wa, wb) and trained to predict
whether the sentence’s syntactic dependency parse
contains a dependency arc with wa as the head and
wb as the modifier. The syntactic dependency arc
classification task presents the model with the rep-
resentations of two tokens (whead , wmod ), where
wmod is the modifier of whead , and the model is
trained to predict the type of syntactic relation that
link them (the label on that dependency arc). We
use the PTB (converted to UD) and the UD-EWT.

Similarly, semantic dependency arc predic-
tion trains the model to predict whether two to-
kens are connected by a semantic dependency arc,
while the semantic dependency arc classifica-
tion task trains models to classify the semantic re-
lations between tokens. We use the dataset from
the SemEval 2015 shared task (Oepen et al., 2015)
with the DELPH-IN MRS-Derived Semantic De-
pendencies (DM) target representation.

The syntactic and semantic dependency arc pre-
diction and classification tasks are closely related
to state-of-the-art models for semantic and syntac-
tic dependency parsing, which score pairs of CWRs
to make head attachment and arc labeling deci-
sions (Dozat and Manning, 2016, 2018).

To generate negative examples for the depen-
dency arc prediction tasks, we take each positive
example (whead , wmod ) and generate a new neg-
ative example (wrand , wmod ). wrand is a random
token in the sentence that is not the head of wmod .
Thus, the datasets used in these tasks are balanced.

We also consider a coreference arc prediction
task, where the model is trained to predict whether
two entities corefer from their CWRs. We use the
dataset from the CoNLL 2012 shared task (Prad-
han et al., 2012). To generate negative exam-
ples, we follow a similar procedure as the depen-
dency arc prediction tasks: given a positive exam-
ple (wa, wb), where wb occurs after wa and the
two tokens share a coreference cluster, we create
a negative example (wrandom entity , wb), where
wrandom entity is a token that occurs before wb and
belongs to a different coreference cluster.

3 Models

Probing Model We use a linear model as our
probing model; limiting its capacity enables us to
focus on what information can be easily extracted
from CWRs. See Appendix B for probing model

training hyperparameters and other details.

Contextualizers We study six publicly-
available models for contextualized word
representation in English.

ELMo (Peters et al., 2018a) concatenates
the output of two contextualizers independently
trained on the bidirectional language modeling
(biLM) task. ELMo (original) uses a 2-layer
LSTM for contextualization. We also study two
variations from Peters et al. (2018b): ELMo (4-
layer) uses a 4-layer LSTM, and ELMo (trans-
former) uses a 6-layer transformer (Vaswani et al.,
2017). Each of these models is trained on 800M
tokens of sentence-shuffled newswire text (the 1
Billion Word Benchmark; Chelba et al., 2014).

The OpenAI transformer (Radford et al.,
2018) is a left-to-right 12-layer transformer lan-
guage model trained on 800M tokens of con-
tiguous text from over 7,000 unique unpublished
books (BookCorpus; Zhu et al., 2015).

BERT (Devlin et al., 2018) uses a bidirectional
transformer jointly trained on a masked language
modeling task and a next sentence prediction task.
The model is trained on BookCorpus and the En-
glish Wikipedia, a total of approximately 3300M
tokens. We study BERT (base, cased), which
uses a 12-layer transformer, and BERT (large,
cased), which uses a 24-layer transformer.

4 Pretrained Contextualizer Comparison

To better understand the linguistic knowledge cap-
tured by pretrained contextualizers, we analyze
each of their layers with our set of probing tasks.
These contextualizers differ in many respects, and
it is outside the scope of this work to control for
all differences between them. We focus on prob-
ing the models that are available to us, leaving a
more systematic comparison of training regimes
and model architectures to future work.

4.1 Experimental Setup

Our probing models are trained on the represen-
tations produced by the individual layers of each
contextualizer. We also compare to a linear prob-
ing model trained on noncontextual vectors (300-
dimensional GloVe trained on the cased Common
Crawl; Pennington et al., 2014) to assess the gains
from contextualization.



1077

Pretrained Representation POS Supersense ID

Avg. CCG PTB EWT Chunk NER ST GED PS-Role PS-Fxn EF

ELMo (original) best layer 81.58 93.31 97.26 95.61 90.04 82.85 93.82 29.37 75.44 84.87 73.20
ELMo (4-layer) best layer 81.58 93.81 97.31 95.60 89.78 82.06 94.18 29.24 74.78 85.96 73.03
ELMo (transformer) best layer 80.97 92.68 97.09 95.13 93.06 81.21 93.78 30.80 72.81 82.24 70.88
OpenAI transformer best layer 75.01 82.69 93.82 91.28 86.06 58.14 87.81 33.10 66.23 76.97 74.03
BERT (base, cased) best layer 84.09 93.67 96.95 95.21 92.64 82.71 93.72 43.30 79.61 87.94 75.11
BERT (large, cased) best layer 85.07 94.28 96.73 95.80 93.64 84.44 93.83 46.46 79.17 90.13 76.25

GloVe (840B.300d) 59.94 71.58 90.49 83.93 62.28 53.22 80.92 14.94 40.79 51.54 49.70

Previous state of the art
(without pretraining) 83.44 94.7 97.96 95.82 95.77 91.38 95.15 39.83 66.89 78.29 77.10

Table 1: Performance of the best layerwise linear probing model for each contextualizer compared against a
GloVe-based linear probing baseline and the previous state of the art. The best contextualizer for each task is
bolded. Results for all layers on all tasks, and papers describing the prior state of the art, are given in Appendix D.

4.2 Results and Discussion

Table 1 compares each contextualizer’s best-
performing probing model with the GloVe base-
line and the previous state of the art for the task
(excluding methods that use pretrained CWRs).3,4

With just a linear model, we can readily extract
much of the information needed for high perfor-
mance on various NLP tasks. In all cases, CWRs
perform significantly better than the noncontex-
tual baseline. Indeed, we often see probing mod-
els rivaling or exceeding the performance of (of-
ten carefully tuned and task-specific) state-of-the-
art models. In particular, the linear probing model
surpasses the published state of the art for gram-
matical error detection and preposition supersense
identification (both role and function).

Comparing the ELMo-based contextualizers,
we see that ELMo (4-layer) and ELMo (original)
are essentially even, though both recurrent mod-
els outperform ELMo (transformer). We also see
that the OpenAI transformer significantly under-
performs the ELMo models and BERT. Given that
it is also the only model trained in a unidirectional
(left-to-right) fashion, this reaffirms that bidirec-
tionality is a crucial component for the highest-
quality contextualizers (Devlin et al., 2018). In ad-
dition, the OpenAI transformer is the only model
trained on lowercased text, which hinders its per-
formance on tasks like NER. BERT significantly
improves over the ELMo and OpenAI models.

Our probing task results indicate that current
methods for CWR do not capture much transfer-

3See Appendix C for references to the previous state of
the art (without pretraining).

4For brevity, in this section we omit probing tasks that
cannot be compared to prior work. See Appendix D for pre-
trained contextualizer performance for all layers and all tasks.

able information about entities and coreference
phenomena in their input (e.g., the NER results
in Table 1 and the coreference arc prediction re-
sults in Appendix D). To alleviate this weakness,
future work could augment pretrained contextual-
izers with explicit entity representations (Ji et al.,
2017; Yang et al., 2017; Bosselut et al., 2017).

Probing Failures While probing models are at
or near state-of-the-art performance across a num-
ber of tasks, they also do not perform as well on
several others, including NER, grammatical error
detection, and conjunct identification. This may
occur because (1) the CWR simply does not en-
code the pertinent information or any predictive
correlates, or (2) the probing model does not have
the capacity necessary to extract the information
or predictive correlates from the vector. In the
former case, learning task-specific contextual fea-
tures might be necessary for encoding the requisite
task-specific information into the CWRs. Learning
task-specific contextual features with a contextual
probing model also helps with (2), but we would
expect the results to be comparable to increasing
the probing model’s capacity.

To better understand the failures of our probing
model, we experiment with (1) a contextual prob-
ing model that uses a task-trained LSTM (unidi-
rectional, 200 hidden units) before the linear out-
put layer (thus adding task-specific contextualiza-
tion) or (2) replacing the linear probing model
with a multilayer perceptron (MLP; adding more
parameters to the probing model: a single 1024d
hidden layer activated by ReLU). These alternate
probing models have nearly the same number of
parameters (LSTM + linear has slightly fewer).

We also compare to a full-featured model to



1078

Probing Model NER GED Conj GGParent

Linear 82.85 29.37 38.72 67.50
MLP (1024d) 87.19 47.45 55.09 78.80
LSTM (200d) + Linear 88.08 48.90 78.21 84.96

BiLSTM (512d)
+ MLP (1024d) 90.05 48.34 87.07 90.38

Table 2: Comparison of different probing models
trained on ELMo (original); best-performing probing
model is bolded. Results for each probing model are
from the highest-performing contextualizer layer. En-
abling probing models to learn task-specific contextual
features (with LSTMs) yields outsized benefits in tasks
requiring highly specific information.

estimate an upper bound on performance for our
probing setup. In this model, the CWRs are in-
puts to a 2-layer BiLSTM with 512 hidden units,
and the output is fed into a MLP with a sin-
gle 1024-dimensional hidden layer activated by a
ReLU to predict a label. A similar model, aug-
mented with a conditional random field (CRF;
Lafferty et al., 2001), achieved state-of-the-art re-
sults on the CoNLL 2003 NER dataset (Peters
et al., 2018a). We remove the CRF, since other
probing models have no global context.

For this experiment, we focus on the ELMo
(original) pretrained contextualizer. Table 2
presents the performance of the best layer within
each alternative probing model on the two tasks
with the largest gap between the linear probing
model and state-of-the-art methods: NER and
grammatical error detection. We also include
great-grandparent prediction and conjunct iden-
tification, two tasks that require highly specific
syntactic knowledge. In all cases, we see that
adding more parameters (either by replacing the
linear model with a MLP, or using a contextual
probing model) leads to significant gains over the
linear probing model. On NER and grammati-
cal error detection, we observe very similar per-
formance between the MLP and LSTM + Lin-
ear models—this indicates that the probing model
simply needed more capacity to extract the nec-
essary information from the CWRs. On con-
junct identification and great-grandparent predic-
tion, two tasks that probe syntactic knowledge un-
likely to be encoded in CWRs, adding parameters
as a task-trained component of our probing model
leads to large gains over simply adding parameters
to the probing model. This indicates that the pre-
trained contextualizers do not capture the informa-

tion necessary for the task, since such information
is learnable by a task-specific contextualizer.

This analysis also reveals insights about con-
textualizer fine-tuning, which seeks to specialize
the CWRs for an end task (Howard and Ruder,
2018; Radford et al., 2018; Devlin et al., 2018).
Our results confirm that task-trained contextual-
ization is important when the end task requires
specific information that may not be captured by
the pretraining task (§4). However, such end-task–
specific contextualization can come from either
fine-tuning CWRs or using fixed output features
as inputs to a task-trained contextualizer; Peters
et al. (2019) begins to explore when each approach
should be applied.

5 Analyzing Layerwise Transferability

We quantify the transferability of CWRs by how
well they can do on the range of probing tasks—
representations that are more transferable will per-
form better than alternatives across tasks. When
analyzing the representations produced by each
layer of pretrained contextualizers, we observe
marked patterns in layerwise transferability (Fig-
ure 3). The first layer of contextualization in recur-
rent models (original and 4-layer ELMo) is con-
sistently the most transferable, even outperform-
ing a scalar mix of layers on most tasks (see Ap-
pendix D for scalar mix results). Schuster et al.
(2019) see the same trend in English dependency
parsing. By contrast, transformer-based contextu-
alizers have no single most-transferable layer; the
best performing layer for each task varies, and is
usually near the middle. Accordingly, a scalar mix
of transformer layers outperforms the best individ-
ual layer on most tasks (see Appendix D).

Pretraining encourages the model to encode
pretraining-task–specific information; they learn
transferable features incidentally. We hypothesize
that this is an inherent trade-off—since these mod-
els used fixed-sized vector representations, task-
specificity comes at the cost of generality and
transferability. To investigate the task-specificity
of the representations generated by each contextu-
alizer layer, we assess how informative each layer
of representation is for the pretraining task, essen-
tially treating it as a probe.

5.1 Experimental Setup

We focus on the ELMo-based models, since the
authors have released code for training their con-



1079

(a) ELMo (original)
Layer 0

Layer 2

(b) ELMo (4-layer)
Layer 0

Layer 4

(c) ELMo (transformer)
Layer 0

Layer 6

(d) OpenAI transformer
Layer 0

Layer 12

(e) BERT (base, cased)
Layer 0

Layer 12

(f) BERT (large, cased)
Layer 0

Layer 24

Lower Performance Higher Performance

Figure 3: A visualization of layerwise patterns in task
performance. Each column represents a probing task,
and each row represents a contextualizer layer.

textualizers. Furthermore, the ELMo-based mod-
els facilitate a controlled comparison—they only
differ in the contextualizer architecture used.

We evaluate how well CWR features perform
the pretraining task—bidirectional language mod-
eling. Specifically, we take the pretrained repre-
sentations for each layer and relearn the language
model softmax classifiers used to predict the next
and previous token. The ELMo models are trained
on the Billion Word Benchmark, so we retrain
the softmax classifier on similar data to mitigate
any possible effects from domain shift. We split
the held-out portion of the Billion Word Bench-
mark into train (80%, 6.2M tokens) and evalua-
tion (20%, 1.6M tokens) sets and use this data to
retrain and evaluate the softmax classifiers. We
expect that biLM perplexity will be lower when
training the softmax classifiers on representations
from layers that capture more information about
the pretraining task.

5.2 Results and Discussion

Figure 4 presents the performance of softmax clas-
sifiers trained to perform the bidirectional lan-
guage modeling task, given just the CWRs as in-
put. We notice that higher layers in recurrent mod-
els consistently achieve lower perplexities. Inter-

estingly, we see that layers 1 and 2 in the 4-layer
ELMo model have very similar performance—this
warrants further exploration. On the other hand,
the layers of the ELMo (transformer) model do not
exhibit such a monotonic increase. While the top-
most layer is best (which we expected, since this
is the vector originally fed into a softmax classifier
during pretraining), the middle layers show vary-
ing performance. Across all models, the represen-
tations that are better-suited for language model-
ing are also those that exhibit worse probing task
performance (Figure 3), indicating that contextu-
alizer layers trade off between encoding general
and task-specific features.

These results also reveal a difference in the
layerwise behavior of LSTMs and transformers;
moving up the LSTM layers yields more task-
specific representations, but the same does not
hold for transformers. Better understanding the
differences between transformers and LSTMs is
an active area of research (Chen et al., 2018; Tang
et al., 2018), and we leave further exploration of
these observations to future work.

These observations motivate the gradual un-
freezing method of Howard and Ruder (2018),
where the model layers are progressively unfrozen
(starting from the final layer) during the fine-
tuning process. Given our observation that higher-
level LSTM layers are less general (and more pre-
training task-specific), they likely have to be fine-
tuned a bit more in order to make them appropri-
ately task specific. Meanwhile, the base layer of
the LSTM already learns highly transferable fea-
tures, and may not benefit from fine-tuning.

6 Transferring Between Tasks

Successful pretrained contextualizers have used
self-supervised tasks such as bidirectional lan-
guage modeling (Peters et al., 2018a) and next sen-
tence prediction (Devlin et al., 2018), which en-
able the use of large, unannotated text corpora.
However, contextualizers can also be pretrained
on explicitly supervised objectives, as done in
pretrained sentence embedding methods (Con-
neau et al., 2017). To better understand how
the choice of pretraining task affects the linguis-
tic knowledge within and transferability of CWRs,
we compare pretraining on a range of different
explicitly-supervised tasks with bidirectional lan-
guage model pretraining.



1080

(a) ELMo (original) (b) ELMo (4-layer)

0 1 2
ELMo (original) Layer #

0
1000
2000
3000
4000
5000
6000
7000

P
er

pl
ex

ity
7026

920
235

0 1 2 3 4
ELMo (4-layer) Layer #

0

1000

2000

3000

4000

P
er

pl
ex

ity

4204

2398 2363

1013
195

(c) ELMo (transformer)

0 1 2 3 4 5 6
ELMo (transformer) Layer #

0
100
200
300
400
500

P
er

pl
ex

ity

546

295

448
374

314

523

91

Figure 4: Bidirectional language modeling as a probe:
average of forward and backward perplexity (lower is
better) of each ELMo contextualizer layer. We see a
monotonic decrease in BiLM perplexity when trained
on the outputs of higher LSTM layers, but transformer
layers do not exhibit the same pattern.

6.1 Experimental Setup

To ensure a controlled comparison of different pre-
training tasks, we fix the contextualizer’s archi-
tecture and pretraining dataset. All of our con-
textualizers use the ELMo (original) architecture,
and the training data from each of the pretraining
tasks is taken from the PTB. Each of the (identi-
cal) models thus see the same tokens, but the su-
pervision signal differs.5 We compare to (1) a non-
contextual baseline (GloVe) to assess the effect of
contextualization, (2) a randomly-initialized, un-
trained ELMo (original) baseline to measure the
effect of pretraining, and (3) the ELMo (original)
model pretrained on the Billion Word Benchmark
to examine the effect of training the bidirectional
language model on more data.

6.2 Results and Discussion

Table 3 presents the average target task perfor-
mance of each layer in contextualizers pretrained
on twelve different tasks (biLM and the eleven
tasks from §2 with PTB annotations). Bidirec-
tional language modeling pretraining is the most
effective on average. However, the settings that
achieve the highest performance for individual
target tasks often involve transferring between
related tasks (not shown in Table 3; see Ap-
pendix E). For example, when probing CWRs on

5We omit the OpenAI transformer and BERT from this
comparison, since code for pretraining these contextualizers
is not publicly available.

Pretraining Task Layer Average
Target Task Performance

0 1 2 Mix

CCG 56.70 64.45 63.71 66.06
Chunk 54.27 62.69 63.25 63.96
POS 56.21 63.86 64.15 65.13
Parent 54.57 62.46 61.67 64.31
GParent 55.50 62.94 62.91 64.96
GGParent 54.83 61.10 59.84 63.81
Syn. Arc Prediction 53.63 59.94 58.62 62.43
Syn. Arc Classification 56.15 64.41 63.60 66.07
Sem. Arc Prediction 53.19 54.69 53.04 59.84
Sem. Arc Classification 56.28 62.41 61.47 64.67
Conj 50.24 49.93 48.42 56.92
BiLM 66.53 65.91 65.82 66.49

GloVe (840B.300d) 60.55
Untrained ELMo (original) 52.14 39.26 39.39 54.42

ELMo (original)
(BiLM on 1B Benchmark) 64.40 79.05 77.72 78.90

Table 3: Performance (averaged across target tasks) of
contextualizers pretrained on a variety of tasks.

the syntactic dependency arc classification (EWT)
task, we see the largest gains from pretraining on
the task itself, but with a different dataset (PTB).
However, pretraining on syntactic dependency arc
prediction (PTB), CCG supertagging, chunking,
the ancestor prediction tasks, and semantic depen-
dency arc classification all give better performance
than bidirectional language model pretraining.

Although related task transfer is beneficial, we
naturally see stronger results from training on
more data (the ELMo original BiLM trained on the
Billion Word Benchmark). This indicates that the
transferability of pretrained CWRs relies on pre-
training on large corpora, emphasizing the utility
and importance of self-supervised pretraining.

Furthermore, layer 0 of the BiLM is the highest-
performing single layer among PTB-pretrained
contextualizers. This observation suggests that
lexical information is the source of the language
model’s initial generalizability, since layer 0 is the
output of a character-level convolutional neural
network with no token-level contextual informa-
tion.

7 Related Work

Methodologically, our work is most similar to
Shi et al. (2016b), Adi et al. (2017), and Hupkes
et al. (2018), who use the internal representations
of neural models to predict properties of interest.
Conneau et al. (2018) construct probing tasks to
study the linguistic properties of sentence embed-



1081

ding methods. We focus on contextual word rep-
resentations, which have achieved state-of-the-art
results on a variety of tasks, and examine a broader
range of linguistic knowledge.

In contemporaneous work, Tenney et al. (2019)
evaluate CoVe (McCann et al., 2017), ELMo (Pe-
ters et al., 2018a), the OpenAI Transformer (Rad-
ford et al., 2018), and BERT (Devlin et al., 2018)
on a variety of sub-sentence linguistic analysis
tasks. Their results also suggest that the aforemen-
tioned pretrained models for contextualized word
representation encode stronger notions of syntax
than higher-level semantics. They also find that
using a scalar mix of output layers is particu-
larly effective in deep transformer-based models,
aligned with our own probing results and our ob-
servation that transformers tend to encode trans-
ferable features in their intermediate layers. Fur-
thermore, they find that ELMo’s performance can-
not be explained by a model with access to only
local context, indicating that ELMo encodes lin-
guistic features from distant tokens.

Several other papers have examined how archi-
tecture design and choice of pretraining task af-
fect the quality of learned CWRs. Peters et al.
(2018b) study how the choice of neural architec-
ture influences the end-task performance and qual-
itative properties of CWRs derived from bidirec-
tional language models (ELMo). Bowman et al.
(2018) compare a variety of pretraining tasks and
explore the the impact of multitask learning.

Prior work has employed a variety of other
methods to study the learned representations in
neural models, such as directly examining the ac-
tivations of individual neurons (Karpathy et al.,
2015; Li et al., 2015; Shi et al., 2016a, in-
ter alia), ablating components of the model and
dataset (Kuncoro et al., 2017; Gaddy et al., 2018;
Khandelwal et al., 2018), or interpreting attention
mechanisms (Bahdanau et al., 2015); see Belinkov
and Glass (2019) for a recent survey. One partic-
ularly relevant line of work involves the construc-
tion of synthetic tasks that a model can only solve
if it captures a particular phenomenon (Linzen
et al., 2016; Jumelet and Hupkes, 2018; Wilcox
et al., 2018; Futrell and Levy, 2019, inter alia).
Zhang and Bowman (2018) compare the syntac-
tic knowledge of language models and neural ma-
chine translation systems. We widen the range of
pretraining tasks and target probing model tasks to
gain a more complete picture. We also focus on a

stronger contextualizer architecture, ELMo (origi-
nal), that has produced state-of-the-art results.

Several studies have sought to intrinsically
evaluate noncontextual word representations with
word similarity tasks, such as analogies (Mikolov
et al., 2013). These methods differ from our ap-
proach in that they require no extra parameters and
directly assess the vectors, while our probing mod-
els must be trained. In this regard, our method is
similar to QVEC (Tsvetkov et al., 2015).

8 Conclusion

We study the linguistic knowledge and trans-
ferability of contextualized word representations
with a suite of sixteen diverse probing tasks. The
features generated by pretrained contextualizers
are sufficient for high performance on a broad set
of tasks. For tasks that require specific informa-
tion not captured by the contextual word represen-
tation, we show that learning task-specific contex-
tual features helps to encode the requisite knowl-
edge. In addition, our analysis of patterns in the
transferability of contextualizer layers shows that
the lowest layer of LSTMs encodes the most trans-
ferable features, while transformers’ middle layers
are most transferable. We find that higher layers in
LSTMs are more task-specific (and thus less gen-
eral), while transformer layers do not exhibit this
same monotonic increase in task-specificity. Prior
work has suggested that higher-level contextual-
izer layers may be expressly encoding higher-level
semantic information. Instead, it seems likely that
certain high-level semantic phenomena are inci-
dentally useful for the contextualizer’s pretrain-
ing task, leading to their presence in higher lay-
ers. Lastly, we find that bidirectional language
model pretraining yields representations that are
more transferable in general than eleven other can-
didate pretraining tasks.

Acknowledgments

We thank Johannes Bjerva for sharing the seman-
tic tagging dataset used in Bjerva et al. (2016). We
also thank the members of the Noah’s ARK group
at the University of Washington, the researchers at
the Allen Institute for Artificial Intelligence, and
the anonymous reviewers for their valuable feed-
back. NL is supported by a Washington Research
Foundation Fellowship and a Barry M. Goldwa-
ter Scholarship. YB is supported by the Harvard
Mind, Brain, and Behavior Initiative.



1082

References
Lasha Abzianidze, Johannes Bjerva, Kilian Evang,

Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The paral-
lel meaning bank: Towards a multilingual corpus of
translations annotated with compositional meaning
representations. In Proc. of EACL.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer
Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. In Proc. of ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Com-
putational Linguistics, 25(2):237–265.

Yonatan Belinkov. 2018. On Internal Language Rep-
resentations in Deep Learning: An Analysis of Ma-
chine Translation and Speech Recognition. Ph.D.
thesis, Massachusetts Institute of Technology.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James R. Glass. 2017a. What do
neural machine translation models learn about mor-
phology? In Proc. of ACL.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics.

Yonatan Belinkov, Lluı́s Màrquez, Hassan Sajjad,
Nadir Durrani, Fahim Dalvi, and James R. Glass.
2017b. Evaluating layers of representation in neural
machine translation on part-of-speech and semantic
tagging tasks. In Proc. of IJCNLP.

Johannes Bjerva, Barbara Plank, and Johan Bos. 2016.
Semantic tagging with deep residual networks. In
Proc. of COLING.

Terra Blevins, Omer Levy, and Luke Zettlemoyer.
2018. Deep RNNs encode soft hierarchical syntax.
In Proc. of ACL.

Bernd Bohnet, Ryan T. McDonald, Gonalo Simões,
Daniel Andor, Emily Pitler, and Joshua Maynez.
2018. Morphosyntactic tagging with a meta-
BiLSTM model over context sensitive token encod-
ings. In Proc. of ACL.

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin
Ennis, Dieter Fox, and Yejin Choi. 2017. Simulat-
ing action dynamics with neural process networks.
In Proc. of ICLR.

Samuel R. Bowman, Ellie Pavlick, Edouard Grave,
Benjamin Van Durme, Alex Wang, Jan Hula,
Patrick Xia, Raghavendra Pappagari, R. Thomas
McCoy, Roma Patel, Najoung Kim, Ian Tenney,

Yinghui Huang, Katherin Yu, Shuning Jin, and
Berlin Chen. 2018. Looking for ELMo’s friends:
Sentence-level pretraining beyond language model-
ing. ArXiv:1812.10860.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn. 2014. One
billion word benchmark for measuring progress in
statistical language modeling. In Proc. of INTER-
SPEECH.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Niki Parmar, Mike Schuster, Zhifeng Chen,
Yonghui Wu, and Macduff Hughes. 2018. The best
of both worlds: Combining recent advances in neu-
ral machine translation. In Proc. of ACL.

Alexis Conneau, Douwe Kiela, Holger Schwenk,
Loı̈c Barrault, and Antoine Bordes. 2017. Super-
vised learning of universal sentence representations
from natural language inference data. In Proc. of
EMNLP.

Alexis Conneau, Germán Kruszewski, Guillaume
Lample, Loı̈c Barrault, and Marco Baroni. 2018.
What you can cram into a single vector: Probing
sentence embeddings for linguistic properties. In
Proc. of ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proc. of NAACL.

Timothy Dozat and Christopher D. Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. In Proc. of ICLR.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proc. of ACL.

Jessica Ficler and Yoav Goldberg. 2016. Coordination
annotation extension in the Penn Treebank. In Proc.
of ACL.

Richard Futrell and Roger P. Levy. 2019. Do RNNs
learn human-like abstract word order preferences?
In Proc. of SCiL.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? An
analysis. In Proc. of NAACL.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E.
Peters, Michael Schmitz, and Luke Zettlemoyer.
2018. AllenNLP: A deep semantic natural language
processing platform. In Proc. of NLP-OSS.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple nlp
tasks. In Proc. of EMNLP.



1083

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355–396.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proc. of ACL.

Dieuwke Hupkes, Sara Veldhoen, and Willem
Zuidema. 2018. Visualisation and ‘diagnostic clas-
sifiers’ reveal how recurrent and recursive neural
networks process hierarchical structure. In Proc. of
IJCAI.

Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin
Choi, and Noah A. Smith. 2017. Dynamic entity
representations in neural language models. In Proc.
of EMNLP.

Jaap Jumelet and Dieuwke Hupkes. 2018. Do lan-
guage models understand anything? On the ability
of LSTMs to understand negative polarity items. In
Proc. of BlackboxNLP.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
In Proc. of ICLR (Workshop).

Urvashi Khandelwal, He He, Peng Qi, and Dan Juraf-
sky. 2018. Sharp nearby, fuzzy far away: How neu-
ral language models use context. In Proc. of ACL.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. In Proc. of
ICLR.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A
Smith. 2017. What do recurrent neural network
grammars learn about syntax? In Proc. of EACL.

John D. Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proc. of ICML.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG parsing. In Proc. of NAACL.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2015. Visualizing and understanding neural models
in nlp. In Proc. of NAACL.

Tal Linzen. 2018. What can linguistics and deep learn-
ing contribute to each other? Language.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn treebank. Computa-
tional linguistics, 19(2):313–330.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, and Christopher Potts. 2012. Did it hap-
pen? The pragmatic complexity of veridicality as-
sessment. Computational Linguistics, 38:301–333.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Proc. of NeurIPS.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proc. of NeurIPS.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajic, and Zdenka Uresova. 2015. SemEval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proc. of SemEval 2015.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Proc. of EMNLP.

Matthew Peters, Sebastian Ruder, and Noah A Smith.
2019. To tune or not to tune? Adapting pretrained
representations to diverse tasks. ArXiv:1903.05987.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018a. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Matthew E. Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018b. Dissecting contextual
word embeddings: Architecture and representation.
In Proc. of EMNLP.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Proc. of
CoNLL.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. Technical re-
port, OpenAI.

Marek Rei and Anders Sogaard. 2019. Jointly learning
to label sentences and tokens. In Proc. of AAAI.

Marek Rei and Helen Yannakoudakis. 2016. Composi-
tional sequence labeling models for error detection
in learner writing. In Proc. of ACL.

Rachel Rudinger, Aaron Steven White, and Ben-
jamin Van Durme. 2018. Neural models of factu-
ality. In Proc. of NAACL.

Roser Saurı́ and James Pustejovsky. 2009. Factbank:
a corpus annotated with event factuality. Language
Resources and Evaluation, 43:227–268.

Roser Saurı́ and James Pustejovsky. 2012. Are you
sure that this happened? Assessing the factuality de-
gree of events in text. Computational Linguistics,
38:261–299.



1084

Nathan Schneider, Jena D. Hwang, Vivek Srikumar,
Jakob Prange, Austin Blodgett, Sarah R. Moeller,
Aviram Stern, Adi Bitan, and Omri Abend. 2018.
Comprehensive supersense disambiguation of En-
glish prepositions and possessives. In Proc. of ACL.

Tal Schuster, Ori Ram, Regina Barzilay, and Amir
Globerson. 2019. Cross-lingual alignment of con-
textual word embeddings, with applications to zero-
shot dependency parsing. In Proc. of NAACL.

Xing Shi, Kevin Knight, and Deniz Yuret. 2016a. Why
neural translations are the right length. In Proc. of
EMNLP.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016b. Does
string-based neural MT learn source syntax? In
Proc. of EMNLP.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for English. In
Proc. of LREC.

Gongbo Tang, Mathias Müller, Annette Rios, and Rico
Sennrich. 2018. Why self-attention? A targeted
evaluation of neural machine translation architec-
tures. In Proc. of EMNLP.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipan-
jan Das, and Ellie Pavlick. 2019. What do you learn
from context? Probing for sentence structure in con-
textualized word representations. In Proc. of ICLR.

Erik F. Tjong Kim Sang and Sabine Buchholz.
2000. Introduction to the CoNLL-2000 shared task:
Chunking. In Proc. of LLL and CoNLL.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proc. of CoNLL.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guil-
laume Lample, and Chris Dyer. 2015. Evaluation of
word vector representations by subspace alignment.
In Proc. of EMNLP.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. of NeurIPS.

Ethan Wilcox, Roger Levy, Takashi Morita, and
Richard Futrell. 2018. What do RNN language
models learn about filler-gap dependencies? In
Proc. of BlackboxNLP.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang
Ling. 2017. Reference-aware language models. In
Proc. of EMNLP.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proc. of ACL.

Michihiro Yasunaga, Jungo Kasai, and Dragomir R.
Radev. 2018. Robust multilingual part-of-speech
tagging via adversarial training. In Proc. of NAACL.

Kelly W. Zhang and Samuel R. Bowman. 2018. Lan-
guage modeling teaches you more syntax than trans-
lation does: Lessons learned through auxiliary task
analysis. In Proc. of BlackboxNLP.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. In Proc. of ICCV.



1085

Appendices
A Probing Task Setup Details

Syntactic Constituency Ancestor Tagging We
remove the top-level ROOT node in each sentence.
For words that do not have a parent, grandparent,
or great-grandparent, we set the label to ”None”.
The example is then treated as any other, and the
probing model is required to predict this ”None”
label during training and evaluation.

Preposition Supersense Disambiguation
Since we focus on the linguistic knowledge
within individual or pairs of CWRs, we train and
evaluate our probing models on only single-word
adpositions.

Conjunct Identification Our probing models
are only trained and evaluated on sentences with
a coordination construction in them.

B Probing Model Training Details

Our probing models are trained with Adam
(Kingma and Ba, 2015), using a learning rate of
0.001. We train for 50 epochs, using early stop-
ping with a patience of 3. Our models are im-
plemented in the AllenNLP framework (Gardner
et al., 2018).

For contextualizers that use subword represen-
tations (e.g., the OpenAI transformer and BERT),
we aggregate subword representations into token
representations by taking a token’s representation
to be the representation of its final subword.

C References to State-of-the-Art
Task-Specific Models (Without
Pretraining)

Task Previous state of the art
(without pretraining)

CCG 94.7 (Lewis et al., 2016)
POS (PTB) 97.96 (Bohnet et al., 2018)
POS (EWT) 95.82 (Yasunaga et al., 2018)
Chunk 95.77 (Hashimoto et al., 2017)
NER 91.38 (Hashimoto et al., 2017)
ST 95.15 (Bjerva et al., 2016)
GED 39.83 (Rei and Sogaard, 2019)
PS-Role 66.89 (Schneider et al., 2018)
PS-Fxn 78.29 (Schneider et al., 2018)
EG 77.10 (Rudinger et al., 2018)

Table 4: Performance of prior state of the art models
(without pretraining) for each task.

Note that the performance reported in this paper
for the preposition supersense identification mod-
els of Schneider et al. (2018) differs from their
published result. Their published result is the ac-
curacy on all adpositions; since we only train and
evaluate our model on single-word adpositions,
the number we report in this paper is the perfor-
mance of the Schneider et al. (2018) model on
only single-word adpositions.



1086

D Performance of Pretrained Contextualizers on All Tasks

D.1 Token Labeling (ELMo and OpenAI Transformer)

Pretrained Representation POS Supersense ID

CCG PTB EWT Parent GParent GGParent ST PS-Role PS-Fxn EF

ELMo Original, Layer 0 73.43 93.31 89.71 85.23 54.58 41.57 83.99 41.45 52.41 52.49
ELMo Original, Layer 1 93.31 97.26 95.61 95.56 81.61 67.50 93.82 74.12 84.87 73.20
ELMo Original, Layer 2 91.23 96.45 94.52 94.35 76.22 62.32 92.41 75.44 83.11 72.11
ELMo Original, Scalar Mix 92.96 97.19 95.09 95.56 81.56 67.42 93.86 74.56 84.65 72.96

ELMo (4-layer), Layer 0 73.41 93.42 89.30 85.45 55.40 42.22 83.95 40.13 55.26 53.58
ELMo (4-layer), Layer 1 93.81 97.31 95.60 95.70 81.57 67.66 94.18 74.78 85.96 73.03
ELMo (4-layer), Layer 2 92.47 97.09 95.08 95.01 77.08 63.04 93.43 74.12 85.53 70.97
ELMo (4-layer), Layer 3 91.56 96.82 94.56 94.65 75.58 61.04 92.82 74.12 83.55 70.66
ELMo (4-layer), Layer 4 90.67 96.44 93.99 94.24 75.70 61.45 91.90 73.46 83.77 72.59
ELMo (4-layer), Scalar Mix 93.23 97.34 95.14 95.55 81.36 67.47 94.05 76.10 84.65 72.70

ELMo (transformer), Layer 0 73.06 93.27 89.42 85.59 55.03 41.38 83.81 41.45 54.39 53.13
ELMo (transformer), Layer 1 91.66 97.09 94.78 94.43 77.28 62.69 93.78 65.13 80.04 67.19
ELMo (transformer), Layer 2 92.68 96.93 95.13 95.15 81.37 67.39 93.71 69.74 80.26 70.88
ELMo (transformer), Layer 3 92.82 96.97 94.74 95.28 82.16 68.06 93.45 70.61 82.24 70.24
ELMo (transformer), Layer 4 91.86 96.71 94.41 94.97 81.48 67.33 92.82 72.81 82.02 69.97
ELMo (transformer), Layer 5 91.06 96.24 93.85 94.30 79.65 64.92 91.92 69.52 79.82 70.21
ELMo (transformer), Layer 6 90.19 96.33 93.62 93.98 77.40 63.49 91.78 65.57 80.48 70.82
ELMo (transformer), Scalar Mix 93.66 97.35 94.59 95.16 83.38 69.29 94.26 72.59 82.46 71.94

OpenAI transformer, Layer 0 71.58 89.54 87.44 84.50 56.24 46.31 81.18 37.72 48.90 55.03
OpenAI transformer, Layer 1 78.08 93.32 89.93 88.75 63.59 53.28 85.73 43.64 61.40 63.13
OpenAI transformer, Layer 2 78.19 92.71 85.27 88.22 65.85 56.34 85.54 52.41 66.45 65.69
OpenAI transformer, Layer 3 79.53 93.43 89.67 88.73 67.34 58.10 86.17 53.51 70.18 68.39
OpenAI transformer, Layer 4 80.95 93.82 91.28 90.07 69.34 60.74 87.34 58.55 71.27 69.82
OpenAI transformer, Layer 5 82.03 93.82 91.11 90.51 71.41 62.69 87.81 60.75 73.46 70.92
OpenAI transformer, Layer 6 82.38 93.45 88.09 90.32 72.10 63.68 87.46 64.04 74.12 72.08
OpenAI transformer, Layer 7 82.61 93.25 86.50 90.71 72.60 63.69 86.49 65.13 76.32 73.87
OpenAI transformer, Layer 8 81.43 92.10 86.66 91.00 72.66 64.01 86.65 66.23 76.97 73.86
OpenAI transformer, Layer 9 81.73 91.99 86.60 90.84 72.34 63.72 86.19 66.01 76.54 74.03
OpenAI transformer, Layer 10 81.73 92.05 86.37 90.74 71.41 62.45 86.22 63.38 75.88 73.30
OpenAI transformer, Layer 11 81.97 91.64 86.62 90.43 70.48 60.84 85.91 63.16 76.97 71.99
OpenAI transformer, Layer 12 82.69 92.18 90.87 90.89 69.14 58.74 87.43 63.60 75.66 71.34
OpenAI transformer, Scalar Mix 83.94 94.63 92.60 92.08 73.11 64.64 88.73 64.69 79.17 74.25

GloVe (840B.300d) 71.58 90.49 83.93 81.77 54.01 41.21 80.92 40.79 51.54 49.70

Previous state of the art 94.7 97.96 96.73 - - - 95.15 66.89 78.29 77.10

Table 5: Token labeling task performance of a linear probing model trained on top of the ELMo and OpenAI
contextualizers, compared against a GloVe-based probing baseline and the previous state of the art.



1087

D.2 Token Labeling (BERT)

Pretrained Representation POS Supersense ID

CCG PTB EWT Parent GParent GGParent ST PS-Role PS-Fxn EF

BERT (base, cased), Layer 0 71.45 89.99 86.77 84.41 55.92 46.07 82.25 42.11 54.82 52.70
BERT (base, cased), Layer 1 81.67 93.80 90.58 89.47 62.92 50.93 88.89 50.88 67.76 59.83
BERT (base, cased), Layer 2 88.43 95.76 93.72 92.98 71.73 57.84 92.23 63.60 75.00 64.91
BERT (base, cased), Layer 3 89.77 96.08 94.30 93.92 73.24 58.57 92.85 64.69 78.95 65.58
BERT (base, cased), Layer 4 91.41 96.57 94.58 94.67 76.09 61.17 93.38 66.23 79.17 67.55
BERT (base, cased), Layer 5 92.22 96.68 94.93 95.10 77.79 63.56 93.47 68.20 82.89 69.08
BERT (base, cased), Layer 6 93.14 96.95 95.15 95.46 79.75 65.36 93.72 76.10 84.65 71.26
BERT (base, cased), Layer 7 93.51 96.92 95.12 95.70 80.38 65.96 93.62 77.85 86.40 71.54
BERT (base, cased), Layer 8 93.67 96.80 95.21 95.60 81.04 66.66 93.37 79.61 87.94 73.49
BERT (base, cased), Layer 9 93.51 96.68 94.94 95.64 80.70 66.53 93.18 79.39 86.84 75.11
BERT (base, cased), Layer 10 93.25 96.54 94.51 95.26 79.60 65.49 92.90 79.17 86.18 74.70
BERT (base, cased), Layer 11 92.75 96.40 94.31 95.00 78.50 64.34 92.64 77.41 85.53 75.11
BERT (base, cased), Layer 12 92.21 96.09 93.86 94.55 76.95 62.87 92.34 78.07 84.65 73.77
BERT (base, cased), Scalar Mix 93.78 97.02 95.63 95.83 81.67 67.48 93.85 78.51 85.96 74.88

BERT (large, cased), Layer 0 71.06 89.84 86.81 84.28 55.84 46.17 82.31 38.38 54.61 52.81
BERT (large, cased), Layer 1 79.49 92.58 89.45 88.50 60.96 49.88 87.16 53.51 65.13 59.49
BERT (large, cased), Layer 2 83.30 94.03 91.70 90.48 64.91 51.94 89.47 58.55 71.93 62.49
BERT (large, cased), Layer 3 83.32 94.09 91.92 90.76 64.99 52.26 89.67 58.33 72.81 62.52
BERT (large, cased), Layer 4 88.51 95.61 93.36 93.26 70.99 56.22 92.58 65.35 78.29 65.06
BERT (large, cased), Layer 5 89.69 95.95 94.15 93.94 72.62 57.58 93.05 62.06 76.97 65.79
BERT (large, cased), Layer 6 90.91 96.14 94.35 94.47 75.59 60.80 93.35 62.72 78.51 67.00
BERT (large, cased), Layer 7 91.72 96.30 94.64 94.55 76.35 60.98 93.55 67.98 81.36 66.42
BERT (large, cased), Layer 8 91.56 96.36 94.80 94.61 76.40 61.93 93.50 66.89 80.26 68.56
BERT (large, cased), Layer 9 91.76 96.31 94.86 94.70 75.95 61.60 93.44 66.89 82.02 69.12
BERT (large, cased), Layer 10 91.71 96.27 94.89 94.88 75.84 61.44 93.42 68.64 79.39 69.37
BERT (large, cased), Layer 11 92.01 96.26 94.96 95.10 77.01 62.79 93.39 70.83 81.80 71.12
BERT (large, cased), Layer 12 92.82 96.48 95.27 95.31 78.66 64.51 93.61 74.34 84.21 72.44
BERT (large, cased), Layer 13 93.48 96.73 95.56 95.72 80.51 65.85 93.83 76.54 85.75 72.91
BERT (large, cased), Layer 14 93.85 96.73 95.54 95.98 81.89 67.02 93.81 78.95 87.94 72.72
BERT (large, cased), Layer 15 94.21 96.72 95.80 96.10 82.46 67.53 93.76 79.17 89.25 72.79
BERT (large, cased), Layer 16 94.28 96.67 95.62 96.05 82.78 67.90 93.61 78.73 90.13 74.27
BERT (large, cased), Layer 17 94.13 96.53 95.55 95.92 82.56 67.74 93.45 79.17 87.06 75.52
BERT (large, cased), Layer 18 93.76 96.38 95.45 95.57 81.47 67.11 93.21 79.17 87.06 75.95
BERT (large, cased), Layer 19 93.36 96.25 95.30 95.38 80.47 66.08 93.01 76.10 85.96 76.25
BERT (large, cased), Layer 20 93.06 96.10 94.96 95.20 79.32 64.86 92.78 78.29 87.72 75.92
BERT (large, cased), Layer 21 91.83 95.38 94.05 94.16 76.84 62.43 91.65 74.12 82.89 75.16
BERT (large, cased), Layer 22 89.66 93.88 92.30 92.62 74.73 60.76 89.42 73.90 82.02 74.28
BERT (large, cased), Layer 23 88.70 93.02 91.90 92.36 73.33 59.27 88.92 69.08 80.70 73.54
BERT (large, cased), Layer 24 87.65 92.60 90.84 91.81 71.98 57.95 88.26 69.74 78.73 72.65
BERT (large, cased), Scalar Mix 94.48 97.17 96.05 96.27 83.51 68.90 93.96 78.95 87.06 76.13

Table 6: Token labeling task performance of a linear probing model trained on top of the BERT contextualizers.



1088

D.3 Segmentation (ELMo and OpenAI Transformer)

Pretrained Representation Chunk NER GED Conj

ELMo Original, Layer 0 70.68 64.39 18.49 15.59
ELMo Original, Layer 1 90.04 82.85 29.37 38.72
ELMo Original, Layer 2 86.47 82.80 26.08 29.08
ELMo Original, Scalar Mix 89.29 82.90 27.54 39.57

ELMo (4-layer), Layer 0 70.57 63.96 8.46 15.15
ELMo (4-layer), Layer 1 89.78 81.04 28.07 36.37
ELMo (4-layer), Layer 2 87.18 80.19 29.24 31.44
ELMo (4-layer), Layer 3 86.20 81.56 28.51 28.57
ELMo (4-layer), Layer 4 85.07 82.06 23.85 26.31
ELMo (4-layer), Scalar Mix 86.67 82.37 30.46 28.42

ELMo (transformer), Layer 0 71.01 64.23 13.25 15.69
ELMo (transformer), Layer 1 91.75 78.51 25.29 26.56
ELMo (transformer), Layer 2 92.18 80.92 28.63 34.99
ELMo (transformer), Layer 3 92.14 80.80 29.16 38.23
ELMo (transformer), Layer 4 91.32 80.47 29.71 38.52
ELMo (transformer), Layer 5 89.18 81.21 30.80 35.49
ELMo (transformer), Layer 6 87.96 79.77 27.20 29.17
ELMo (transformer), Scalar Mix 92.08 81.68 26.56 38.45

OpenAI transformer, Layer 0 66.59 46.29 14.78 16.84
OpenAI transformer, Layer 1 77.87 48.88 19.72 17.59
OpenAI transformer, Layer 2 79.67 52.13 21.59 20.72
OpenAI transformer, Layer 3 80.78 52.40 22.58 22.36
OpenAI transformer, Layer 4 82.95 54.62 25.61 23.04
OpenAI transformer, Layer 5 84.67 56.25 29.69 25.53
OpenAI transformer, Layer 6 85.46 56.46 30.69 27.25
OpenAI transformer, Layer 7 86.06 57.73 33.10 30.68
OpenAI transformer, Layer 8 85.75 56.50 32.17 33.06
OpenAI transformer, Layer 9 85.40 57.31 31.90 32.65
OpenAI transformer, Layer 10 84.52 57.32 32.08 30.27
OpenAI transformer, Layer 11 83.00 56.94 30.22 26.60
OpenAI transformer, Layer 12 82.44 58.14 30.81 25.19
OpenAI transformer, Scalar Mix 87.44 59.39 34.54 31.65

GloVe (840B.300d) 62.28 53.22 14.94 10.53

Previous state of the art 95.77 91.38 34.76 -

Table 7: Segmentation task performance of a linear probing model trained on top of the ELMo and OpenAI
contextualizers, compared against a GloVe-based probing baseline and the previous state of the art.



1089

D.4 Segmentation (BERT)

Pretrained Representation Chunk NER GED Conj

BERT (base, cased), Layer 0 69.86 53.50 12.63 16.24
BERT (base, cased), Layer 1 75.56 66.94 16.85 21.83
BERT (base, cased), Layer 2 86.64 71.08 22.66 22.87
BERT (base, cased), Layer 3 87.70 73.83 25.80 25.50
BERT (base, cased), Layer 4 90.64 77.28 31.35 29.39
BERT (base, cased), Layer 5 91.21 78.81 32.34 30.58
BERT (base, cased), Layer 6 92.29 80.81 37.85 35.26
BERT (base, cased), Layer 7 92.64 81.50 40.14 35.86
BERT (base, cased), Layer 8 92.11 82.45 42.08 42.26
BERT (base, cased), Layer 9 91.95 82.71 43.20 43.93
BERT (base, cased), Layer 10 91.30 82.66 42.46 43.38
BERT (base, cased), Layer 11 90.71 82.42 43.30 41.35
BERT (base, cased), Layer 12 89.38 80.64 39.87 39.34
BERT (base, cased), Scalar Mix 92.96 82.43 43.22 43.15

BERT (large, cased), Layer 0 70.42 53.95 13.44 16.65
BERT (large, cased), Layer 1 73.98 65.92 16.20 19.58
BERT (large, cased), Layer 2 79.82 67.96 17.26 20.01
BERT (large, cased), Layer 3 79.50 68.82 17.42 21.83
BERT (large, cased), Layer 4 87.49 71.13 24.06 23.21
BERT (large, cased), Layer 5 89.81 72.06 30.27 24.13
BERT (large, cased), Layer 6 89.92 74.30 31.44 26.75
BERT (large, cased), Layer 7 90.39 75.93 33.27 27.74
BERT (large, cased), Layer 8 90.28 76.99 33.34 29.94
BERT (large, cased), Layer 9 90.09 78.87 33.16 30.07
BERT (large, cased), Layer 10 89.92 80.08 33.31 30.17
BERT (large, cased), Layer 11 90.20 81.23 34.49 31.78
BERT (large, cased), Layer 12 91.22 83.00 37.27 34.10
BERT (large, cased), Layer 13 93.04 83.66 40.10 35.04
BERT (large, cased), Layer 14 93.64 84.11 43.11 39.67
BERT (large, cased), Layer 15 93.18 84.21 44.92 43.12
BERT (large, cased), Layer 16 93.14 84.34 45.37 46.54
BERT (large, cased), Layer 17 92.80 84.44 45.60 47.76
BERT (large, cased), Layer 18 91.72 84.03 45.82 47.34
BERT (large, cased), Layer 19 91.48 84.29 46.46 46.00
BERT (large, cased), Layer 20 90.78 84.25 46.07 44.81
BERT (large, cased), Layer 21 87.97 82.36 44.53 41.91
BERT (large, cased), Layer 22 85.19 77.58 43.03 37.49
BERT (large, cased), Layer 23 84.23 77.02 42.00 35.21
BERT (large, cased), Layer 24 83.30 74.83 41.29 34.38
BERT (large, cased), Scalar Mix 93.59 84.98 47.32 45.94

Table 8: Segmentation task performance of a linear probing model trained on top of the BERT contextualizers.



1090

D.5 Pairwise Relations (ELMo and OpenAI Transformer)

Pretrained Representation
Syntactic Dep.
Arc Prediction

Syntactic Dep.
Arc Classification Semantic Dep.

Arc Prediction
Semantic Dep.
Arc Classification

Coreference
Arc Prediction

PTB EWT PTB EWT

ELMo (original), Layer 0 78.27 77.73 82.05 78.52 70.65 77.48 72.89
ELMo (original), Layer 1 89.04 86.46 96.13 93.01 87.71 93.31 71.33
ELMo (original), Layer 2 88.33 85.34 94.72 91.32 86.44 90.22 68.46
ELMo (original), Scalar Mix 89.30 86.56 95.81 91.69 87.79 93.13 73.24

ELMo (4-layer), Layer 0 78.09 77.57 82.13 77.99 69.96 77.22 73.57
ELMo (4-layer), Layer 1 88.79 86.31 96.20 93.20 87.15 93.27 72.93
ELMo (4-layer), Layer 2 87.33 84.75 95.38 91.87 85.29 90.57 71.78
ELMo (4-layer), Layer 3 86.74 84.17 95.06 91.55 84.44 90.04 70.11
ELMo (4-layer), Layer 4 87.61 85.09 94.14 90.68 85.81 89.45 68.36
ELMo (4-layer), Scalar Mix 88.98 85.94 95.82 91.77 87.39 93.25 73.88

ELMo (transformer), Layer 0 78.10 78.04 81.09 77.67 70.11 77.11 72.50
ELMo (transformer), Layer 1 88.24 85.48 93.62 89.18 85.16 90.66 72.47
ELMo (transformer), Layer 2 88.87 84.72 94.14 89.40 85.97 91.29 73.03
ELMo (transformer), Layer 3 89.01 84.62 94.07 89.17 86.83 90.35 72.62
ELMo (transformer), Layer 4 88.55 85.62 94.14 89.00 86.00 89.04 71.80
ELMo (transformer), Layer 5 88.09 83.23 92.70 88.84 85.79 89.66 71.62
ELMo (transformer), Layer 6 87.22 83.28 92.55 87.13 84.71 87.21 66.35
ELMo (transformer), Scalar Mix 90.74 86.39 96.40 91.06 89.18 94.35 75.52

OpenAI transformer, Layer 0 80.80 79.10 83.35 80.32 76.39 80.50 72.58
OpenAI transformer, Layer 1 81.91 79.99 88.22 84.51 77.70 83.88 75.23
OpenAI transformer, Layer 2 82.56 80.22 89.34 85.99 78.47 85.85 75.77
OpenAI transformer, Layer 3 82.87 81.21 90.89 87.67 78.91 87.76 75.81
OpenAI transformer, Layer 4 83.69 82.07 92.21 89.24 80.51 89.59 75.99
OpenAI transformer, Layer 5 84.53 82.77 93.12 90.34 81.95 90.25 76.05
OpenAI transformer, Layer 6 85.47 83.89 93.71 90.63 83.88 90.99 74.43
OpenAI transformer, Layer 7 86.32 84.15 93.95 90.82 85.15 91.18 74.05
OpenAI transformer, Layer 8 86.84 84.06 94.16 91.02 85.23 90.86 74.20
OpenAI transformer, Layer 9 87.00 84.47 93.95 90.77 85.95 90.85 74.57
OpenAI transformer, Layer 10 86.76 84.28 93.40 90.26 85.17 89.94 73.86
OpenAI transformer, Layer 11 85.84 83.42 92.82 89.07 83.39 88.46 72.03
OpenAI transformer, Layer 12 85.06 83.02 92.37 89.08 81.88 87.47 70.44
OpenAI transformer, Scalar Mix 87.18 85.30 94.51 91.55 86.13 91.55 76.47

GloVe (840B.300d) 74.14 73.94 77.54 72.74 68.94 71.84 72.96

Table 9: Pairwise relation task performance of a linear probing model trained on top of the ELMo and OpenAI
contextualizers, compared against a GloVe-based probing baseline.



1091

D.6 Pairwise Relations (BERT)

Pretrained Representation
Syntactic Dep.
Arc Prediction

Syntactic Dep.
Arc Classification Semantic Dep.

Arc Prediction
Semantic Dep.
Arc Classification

Coreference
Arc Prediction

PTB EWT PTB EWT

BERT (base, cased), Layer 0 83.00 80.36 83.47 79.15 80.26 80.35 74.93
BERT (base, cased), Layer 1 83.66 81.69 86.92 82.62 80.81 82.69 75.35
BERT (base, cased), Layer 2 84.00 82.66 91.90 88.51 79.34 87.45 75.19
BERT (base, cased), Layer 3 84.12 82.86 92.80 89.49 79.05 88.41 75.83
BERT (base, cased), Layer 4 85.50 84.07 93.91 91.02 81.37 90.20 76.14
BERT (base, cased), Layer 5 86.67 84.69 94.87 92.01 83.41 91.34 76.35
BERT (base, cased), Layer 6 87.98 85.91 95.57 93.01 85.73 92.47 75.95
BERT (base, cased), Layer 7 88.24 86.30 95.65 93.31 85.96 92.75 75.37
BERT (base, cased), Layer 8 88.64 86.49 95.90 93.39 86.59 93.18 76.39
BERT (base, cased), Layer 9 88.76 86.17 95.84 93.32 86.74 92.68 76.62
BERT (base, cased), Layer 10 88.16 85.86 95.42 92.82 86.29 91.79 76.84
BERT (base, cased), Layer 11 87.74 85.40 95.09 92.37 85.83 91.07 76.88
BERT (base, cased), Layer 12 85.93 83.99 94.79 91.70 82.71 90.10 76.78
BERT (base, cased), Scalar Mix 89.06 86.58 95.91 93.10 87.10 93.38 77.88

BERT (large, cased), Layer 0 82.22 79.92 83.57 79.32 79.04 81.25 73.75
BERT (large, cased), Layer 1 81.65 80.04 85.23 80.95 77.97 81.36 73.99
BERT (large, cased), Layer 2 81.84 80.09 87.39 83.80 77.17 82.44 73.89
BERT (large, cased), Layer 3 81.66 80.35 87.36 83.74 76.92 82.91 73.62
BERT (large, cased), Layer 4 83.56 82.17 91.44 88.45 78.43 87.32 72.99
BERT (large, cased), Layer 5 84.24 82.94 92.33 89.62 79.28 88.85 73.34
BERT (large, cased), Layer 6 85.05 83.50 93.75 91.02 80.18 90.14 74.02
BERT (large, cased), Layer 7 85.43 84.03 94.06 91.65 80.64 90.69 74.55
BERT (large, cased), Layer 8 85.41 83.92 94.18 91.66 80.64 90.82 75.92
BERT (large, cased), Layer 9 85.35 83.76 94.11 91.10 80.64 90.62 76.00
BERT (large, cased), Layer 10 85.51 83.92 94.09 91.17 81.51 90.43 76.19
BERT (large, cased), Layer 11 85.91 83.88 94.48 91.73 82.05 91.13 75.86
BERT (large, cased), Layer 12 86.80 85.13 95.03 92.37 83.99 92.08 75.13
BERT (large, cased), Layer 13 87.64 86.00 95.54 93.02 84.91 92.74 74.63
BERT (large, cased), Layer 14 88.62 86.50 95.94 93.62 85.91 93.51 75.16
BERT (large, cased), Layer 15 88.87 86.95 96.02 93.66 86.49 93.86 75.58
BERT (large, cased), Layer 16 89.36 87.25 96.18 93.86 87.79 93.83 75.15
BERT (large, cased), Layer 17 89.62 87.47 96.01 93.88 88.14 93.41 75.93
BERT (large, cased), Layer 18 89.41 87.00 95.82 93.47 87.77 93.00 77.85
BERT (large, cased), Layer 19 88.78 86.60 95.59 92.98 87.16 92.27 80.47
BERT (large, cased), Layer 20 88.24 85.87 95.12 92.47 86.45 91.33 80.94
BERT (large, cased), Layer 21 86.48 84.21 94.21 91.12 83.94 89.42 81.14
BERT (large, cased), Layer 22 85.42 83.24 92.94 90.02 82.01 88.17 80.36
BERT (large, cased), Layer 23 84.69 82.81 92.28 89.47 81.07 87.32 79.64
BERT (large, cased), Layer 24 83.24 81.48 91.07 87.88 78.24 85.98 79.35
BERT (large, cased), Scalar Mix 90.09 87.51 96.15 93.61 88.49 94.25 81.16

Table 10: Pairwise relation task performance of a linear probing model trained on top of the BERT contextualizers.



1092

E Full Results for Transferring Between Pretraining Tasks

E.1 Token Labeling

Pretrained Representation
Supersense ID

POS (EWT) ST PS-Role PS-Fxn EF

Untrained ELMo (original), Layer 0 77.05 76.09 36.99 48.17 43.08
Untrained ELMo (original), Layer 1 56.03 68.63 16.01 24.71 45.57
Untrained ELMo (original), Layer 2 55.89 68.51 16.01 25.44 46.06
Untrained ELMo (original), Scalar Mix 78.58 82.45 38.23 48.90 47.37

CCG, Layer 0 84.33 79.53 38.38 53.29 47.71
CCG, Layer 1 88.02 87.97 46.27 58.48 57.96
CCG, Layer 2 87.81 87.38 43.79 58.55 57.98
CCG, Scalar Mix 90.44 91.21 50.07 65.57 60.24

Chunk, Layer 0 82.51 78.45 37.06 49.12 38.93
Chunk, Layer 1 87.33 87.42 44.81 59.36 55.66
Chunk, Layer 2 86.61 87.04 39.91 58.11 56.95
Chunk, Scalar Mix 88.62 89.77 44.23 60.01 56.24

PTB (POS), Layer 0 84.58 79.95 37.43 49.49 46.19
PTB (POS), Layer 1 90.53 90.10 42.47 59.80 61.28
PTB (POS), Layer 2 90.45 89.83 44.37 58.92 62.14
PTB (POS), Scalar Mix 90.75 91.13 45.39 60.67 62.77

Parent, Layer 0 81.84 78.47 36.33 49.71 38.35
Parent, Layer 1 87.21 87.36 45.98 58.85 54.45
Parent, Layer 2 86.57 86.18 42.69 58.48 54.58
Parent, Scalar Mix 89.10 90.01 44.88 61.92 55.64

GParent, Layer 0 81.85 78.77 37.06 51.75 40.46
GParent, Layer 1 86.05 86.78 46.86 60.82 55.58
GParent, Layer 2 85.64 86.17 45.25 62.13 55.65
GParent, Scalar Mix 88.08 89.48 48.03 63.38 55.96

GGParent, Layer 0 81.44 77.88 38.74 49.12 42.17
GGParent, Layer 1 83.51 85.23 44.08 57.68 55.77
GGParent, Layer 2 83.17 84.10 39.40 56.29 55.82
GGParent, Scalar Mix 86.18 88.84 44.52 61.62 55.50

Syn. Arc Prediction (PTB), Layer 0 79.97 77.34 36.26 47.15 38.81
Syn. Arc Prediction (PTB), Layer 1 80.67 82.60 40.06 54.61 47.86
Syn. Arc Prediction (PTB), Layer 2 78.83 80.91 34.65 52.12 45.64
Syn. Arc Prediction (PTB), Scalar Mix 85.76 88.13 40.79 54.17 50.91

Syn. Arc Classification (PTB), Layer 0 83.61 79.61 37.21 51.97 42.07
Syn. Arc Classification (PTB), Layer 1 89.28 88.70 47.22 61.11 55.55
Syn. Arc Classification (PTB), Layer 2 88.77 88.12 44.66 58.92 56.16
Syn. Arc Classification (PTB), Scalar Mix 90.18 90.99 48.17 62.21 56.90

Sem. Arc Prediction, Layer 0 78.64 76.95 34.43 49.78 39.64
Sem. Arc Prediction, Layer 1 74.66 74.83 33.92 47.88 36.46
Sem. Arc Prediction, Layer 2 74.06 73.42 30.85 45.39 35.63
Sem. Arc Prediction, Scalar Mix 83.77 85.06 38.45 57.16 48.27

Sem. Arc Classification, Layer 0 83.17 79.17 38.60 51.54 44.79
Sem. Arc Classification, Layer 1 86.45 87.04 44.81 58.19 55.18
Sem. Arc Classification, Layer 2 85.42 85.87 41.45 58.55 52.87
Sem. Arc Classification, Scalar Mix 88.44 90.00 45.03 61.33 56.07

Conj, Layer 0 72.21 73.87 37.43 47.95 36.33
Conj, Layer 1 64.95 68.96 27.70 41.89 42.10
Conj, Layer 2 64.03 67.17 27.56 37.21 40.59
Conj, Scalar Mix 76.96 80.22 36.33 50.66 42.79

BiLM, Layer 0 87.54 90.22 50.88 67.32 59.65
BiLM, Layer 1 86.55 87.19 50.22 67.11 59.32
BiLM, Layer 2 86.49 89.67 49.34 66.01 59.45
BiLM, Scalar Mix 86.76 90.11 50.44 67.32 67.32

ELMo (original), Layer 0 89.71 83.99 41.45 52.41 52.49
ELMo (original), Layer 1 95.61 93.82 74.12 84.87 73.20
ELMo (original), Layer 2 94.52 92.41 75.44 83.11 72.11
ELMo (original), Scalar Mix 95.09 93.86 74.56 84.65 84.65

GloVe (840B.300d) 83.93 80.92 40.79 51.54 49.70

Table 11: Target token labeling task performance of contextualizers pretrained on a variety of different tasks. The
probing model used is linear, and the contextualizer architecture is ELMo (original).



1093

E.2 Segmentation

Pretrained Representation NER GED

Untrained ELMo (original), Layer 0 24.71 0.00
Untrained ELMo (original), Layer 1 0.00 0.00
Untrained ELMo (original), Layer 2 0.00 0.00
Untrained ELMo (original), Scalar Mix 34.28 1.81

CCG, Layer 0 32.30 8.89
CCG, Layer 1 44.01 22.68
CCG, Layer 2 42.45 25.15
CCG, Scalar Mix 49.07 4.52

Chunk, Layer 0 23.47 5.80
Chunk, Layer 1 45.44 5.46
Chunk, Layer 2 43.59 24.11
Chunk, Scalar Mix 46.83 4.30

PTB (POS), Layer 0 32.64 7.87
PTB (POS), Layer 1 52.03 5.80
PTB (POS), Layer 2 52.04 9.76
PTB (POS), Scalar Mix 53.51 3.19

Parent, Layer 0 25.11 6.66
Parent, Layer 1 42.76 6.22
Parent, Layer 2 42.49 8.33
Parent, Scalar Mix 47.06 3.01

GParent, Layer 0 30.39 4.58
GParent, Layer 1 47.67 6.20
GParent, Layer 2 47.87 10.34
GParent, Scalar Mix 50.06 1.71

GGParent, Layer 0 28.57 2.25
GGParent, Layer 1 46.21 4.32
GGParent, Layer 2 45.34 3.74
GGParent, Scalar Mix 48.19 1.54

Syn. Arc Prediction (PTB), Layer 0 26.77 1.82
Syn. Arc Prediction (PTB), Layer 1 43.93 5.94
Syn. Arc Prediction (PTB), Layer 2 41.83 14.50
Syn. Arc Prediction (PTB), Scalar Mix 46.58 1.47

Syn. Arc Classification (PTB), Layer 0 33.10 3.51
Syn. Arc Classification (PTB), Layer 1 50.76 3.92
Syn. Arc Classification (PTB), Layer 2 49.64 5.77
Syn. Arc Classification (PTB), Scalar Mix 53.00 1.27

Sem. Arc Prediction, Layer 0 24.47 1.05
Sem. Arc Prediction, Layer 1 34.47 10.78
Sem. Arc Prediction, Layer 2 31.30 10.77
Sem. Arc Prediction, Scalar Mix 36.97 0.32

Sem. Arc Classification, Layer 0 34.00 5.08
Sem. Arc Classification, Layer 1 48.07 5.39
Sem. Arc Classification, Layer 2 46.67 6.24
Sem. Arc Classification, Scalar Mix 50.80 1.75

Conj, Layer 0 17.15 3.99
Conj, Layer 1 37.61 0.87
Conj, Layer 2 34.78 2.38
Conj, Scalar Mix 40.97 0.33

BiLM, Layer 0 56.05 3.99
BiLM, Layer 1 57.19 1.22
BiLM, Layer 2 57.05 1.03
BiLM, Scalar Mix 58.50 1.29

ELMo (original), Layer 0 64.39 18.49
ELMo (original), Layer 1 82.85 29.37
ELMo (original), Layer 2 82.80 26.08
ELMo (original), Scalar Mix 82.90 27.54

GloVe (840B.300d) 53.22 14.94

Table 12: Target segmentation task performance of contextualizers pretrained on a variety of different tasks. The
probing model used is linear, and the contextualizer architecture is ELMo (original).



1094

E.3 Pairwise Prediction

Pretrained Representation Syn. Arc
Prediction

(EWT)

Syn. Arc
Classification

(EWT)

Coreference
Arc Prediction

Untrained ELMo (original), Layer 0 73.75 66.27 66.25
Untrained ELMo (original), Layer 1 68.40 56.73 62.82
Untrained ELMo (original), Layer 2 68.86 56.62 63.15
Untrained ELMo (original), Scalar Mix 72.24 70.62 69.72

CCG, Layer 0 75.92 69.84 67.84
CCG, Layer 1 84.93 85.59 62.10
CCG, Layer 2 84.45 84.59 59.19
CCG, Scalar Mix 85.44 88.11 70.14

Chunk, Layer 0 76.67 69.72 65.60
Chunk, Layer 1 85.18 86.50 62.74
Chunk, Layer 2 84.80 84.84 60.23
Chunk, Scalar Mix 85.42 87.57 68.92

PTB (POS), Layer 0 76.07 70.32 67.50
PTB (POS), Layer 1 83.97 86.64 63.43
PTB (POS), Layer 2 83.88 86.44 61.61
PTB (POS), Scalar Mix 84.17 87.72 69.61

Parent, Layer 0 76.20 68.99 67.80
Parent, Layer 1 84.93 86.15 62.69
Parent, Layer 2 85.57 85.61 59.10
Parent, Scalar Mix 86.01 87.49 69.34

GParent, Layer 0 76.59 69.51 68.99
GParent, Layer 1 85.96 85.33 60.84
GParent, Layer 2 85.69 84.38 58.76
GParent, Scalar Mix 86.17 87.49 70.24

GGParent, Layer 0 76.28 69.91 69.24
GGParent, Layer 1 85.74 83.45 59.73
GGParent, Layer 2 85.49 82.12 58.89
GGParent, Scalar Mix 86.27 86.57 70.58

Syn. Arc Prediction (PTB), Layer 0 77.04 68.01 68.28
Syn. Arc Prediction (PTB), Layer 1 90.39 81.00 60.29
Syn. Arc Prediction (PTB), Layer 2 90.82 76.50 57.46
Syn. Arc Prediction (PTB), Scalar Mix 91.66 84.18 69.15

Syn. Arc Classification (PTB), Layer 0 76.14 71.80 68.40
Syn. Arc Classification (PTB), Layer 1 86.55 90.04 62.10
Syn. Arc Classification (PTB), Layer 2 87.46 89.35 59.74
Syn. Arc Classification (PTB), Scalar Mix 87.78 90.98 70.00

Sem. Arc Prediction, Layer 0 76.25 67.73 69.44
Sem. Arc Prediction, Layer 1 84.91 73.11 57.62
Sem. Arc Prediction, Layer 2 85.86 69.75 55.91
Sem. Arc Prediction, Scalar Mix 86.37 80.74 69.72

Sem. Arc Classification, Layer 0 75.85 70.12 68.96
Sem. Arc Classification, Layer 1 85.30 86.21 60.25
Sem. Arc Classification, Layer 2 86.10 84.50 58.39
Sem. Arc Classification, Scalar Mix 86.53 87.75 70.36

Conj, Layer 0 72.62 58.40 68.50
Conj, Layer 1 80.84 68.12 58.46
Conj, Layer 2 80.46 64.30 57.89
Conj, Scalar Mix 80.96 73.89 71.96

BiLM, Layer 0 84.27 86.74 71.75
BiLM, Layer 1 86.36 86.86 70.47
BiLM, Layer 2 86.44 86.19 70.14
BiLM, Scalar Mix 86.42 85.93 71.62

ELMo (original), Layer 0 77.73 78.52 72.89
ELMo (original), Layer 1 86.46 93.01 71.33
ELMo (original), Layer 2 85.34 91.32 68.46
ELMo (original), Scalar Mix 86.56 91.69 73.24

GloVe (840B.300d) 73.94 72.74 72.96

Table 13: Target pairwise prediction task performance of contextualizers pretrained on a variety of different tasks.
The probing model used is linear, and the contextualizer architecture is ELMo (original).


