@inproceedings{nguyen-etal-2019-fake,
title = "Fake News Detection using Deep {M}arkov Random Fields",
author = "Nguyen, Duc Minh and
Do, Tien Huu and
Calderbank, Robert and
Deligiannis, Nikos",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1141/",
doi = "10.18653/v1/N19-1141",
pages = "1391--1400",
abstract = "Deep-learning-based models have been successfully applied to the problem of detecting fake news on social media. While the correlations among news articles have been shown to be effective cues for online news analysis, existing deep-learning-based methods often ignore this information and only consider each news article individually. To overcome this limitation, we develop a graph-theoretic method that inherits the power of deep learning while at the same time utilizing the correlations among the articles. We formulate fake news detection as an inference problem in a Markov random field (MRF) which can be solved by the iterative mean-field algorithm. We then unfold the mean-field algorithm into hidden layers that are composed of common neural network operations. By integrating these hidden layers on top of a deep network, which produces the MRF potentials, we obtain our deep MRF model for fake news detection. Experimental results on well-known datasets show that the proposed model improves upon various state-of-the-art models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-etal-2019-fake">
<titleInfo>
<title>Fake News Detection using Deep Markov Random Fields</title>
</titleInfo>
<name type="personal">
<namePart type="given">Duc</namePart>
<namePart type="given">Minh</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tien</namePart>
<namePart type="given">Huu</namePart>
<namePart type="family">Do</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Calderbank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikos</namePart>
<namePart type="family">Deligiannis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Deep-learning-based models have been successfully applied to the problem of detecting fake news on social media. While the correlations among news articles have been shown to be effective cues for online news analysis, existing deep-learning-based methods often ignore this information and only consider each news article individually. To overcome this limitation, we develop a graph-theoretic method that inherits the power of deep learning while at the same time utilizing the correlations among the articles. We formulate fake news detection as an inference problem in a Markov random field (MRF) which can be solved by the iterative mean-field algorithm. We then unfold the mean-field algorithm into hidden layers that are composed of common neural network operations. By integrating these hidden layers on top of a deep network, which produces the MRF potentials, we obtain our deep MRF model for fake news detection. Experimental results on well-known datasets show that the proposed model improves upon various state-of-the-art models.</abstract>
<identifier type="citekey">nguyen-etal-2019-fake</identifier>
<identifier type="doi">10.18653/v1/N19-1141</identifier>
<location>
<url>https://aclanthology.org/N19-1141/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1391</start>
<end>1400</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fake News Detection using Deep Markov Random Fields
%A Nguyen, Duc Minh
%A Do, Tien Huu
%A Calderbank, Robert
%A Deligiannis, Nikos
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F nguyen-etal-2019-fake
%X Deep-learning-based models have been successfully applied to the problem of detecting fake news on social media. While the correlations among news articles have been shown to be effective cues for online news analysis, existing deep-learning-based methods often ignore this information and only consider each news article individually. To overcome this limitation, we develop a graph-theoretic method that inherits the power of deep learning while at the same time utilizing the correlations among the articles. We formulate fake news detection as an inference problem in a Markov random field (MRF) which can be solved by the iterative mean-field algorithm. We then unfold the mean-field algorithm into hidden layers that are composed of common neural network operations. By integrating these hidden layers on top of a deep network, which produces the MRF potentials, we obtain our deep MRF model for fake news detection. Experimental results on well-known datasets show that the proposed model improves upon various state-of-the-art models.
%R 10.18653/v1/N19-1141
%U https://aclanthology.org/N19-1141/
%U https://doi.org/10.18653/v1/N19-1141
%P 1391-1400
Markdown (Informal)
[Fake News Detection using Deep Markov Random Fields](https://aclanthology.org/N19-1141/) (Nguyen et al., NAACL 2019)
ACL
- Duc Minh Nguyen, Tien Huu Do, Robert Calderbank, and Nikos Deligiannis. 2019. Fake News Detection using Deep Markov Random Fields. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1391–1400, Minneapolis, Minnesota. Association for Computational Linguistics.