@inproceedings{amiri-mohtarami-2019-vector,
title = "Vector of Locally Aggregated Embeddings for Text Representation",
author = "Amiri, Hadi and
Mohtarami, Mitra",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1143/",
doi = "10.18653/v1/N19-1143",
pages = "1408--1414",
abstract = "We present Vector of Locally Aggregated Embeddings (VLAE) for effective and, ultimately, lossless representation of textual content. Our model encodes each input text by effectively identifying and integrating the representations of its semantically-relevant parts. The proposed model generates high quality representation of textual content and improves the classification performance of current state-of-the-art deep averaging networks across several text classification tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="amiri-mohtarami-2019-vector">
<titleInfo>
<title>Vector of Locally Aggregated Embeddings for Text Representation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hadi</namePart>
<namePart type="family">Amiri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mitra</namePart>
<namePart type="family">Mohtarami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present Vector of Locally Aggregated Embeddings (VLAE) for effective and, ultimately, lossless representation of textual content. Our model encodes each input text by effectively identifying and integrating the representations of its semantically-relevant parts. The proposed model generates high quality representation of textual content and improves the classification performance of current state-of-the-art deep averaging networks across several text classification tasks.</abstract>
<identifier type="citekey">amiri-mohtarami-2019-vector</identifier>
<identifier type="doi">10.18653/v1/N19-1143</identifier>
<location>
<url>https://aclanthology.org/N19-1143/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1408</start>
<end>1414</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Vector of Locally Aggregated Embeddings for Text Representation
%A Amiri, Hadi
%A Mohtarami, Mitra
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F amiri-mohtarami-2019-vector
%X We present Vector of Locally Aggregated Embeddings (VLAE) for effective and, ultimately, lossless representation of textual content. Our model encodes each input text by effectively identifying and integrating the representations of its semantically-relevant parts. The proposed model generates high quality representation of textual content and improves the classification performance of current state-of-the-art deep averaging networks across several text classification tasks.
%R 10.18653/v1/N19-1143
%U https://aclanthology.org/N19-1143/
%U https://doi.org/10.18653/v1/N19-1143
%P 1408-1414
Markdown (Informal)
[Vector of Locally Aggregated Embeddings for Text Representation](https://aclanthology.org/N19-1143/) (Amiri & Mohtarami, NAACL 2019)
ACL
- Hadi Amiri and Mitra Mohtarami. 2019. Vector of Locally Aggregated Embeddings for Text Representation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1408–1414, Minneapolis, Minnesota. Association for Computational Linguistics.