@inproceedings{evang-2019-cross,
    title = "Cross-lingual {CCG} Induction",
    author = "Evang, Kilian",
    editor = "Burstein, Jill  and
      Doran, Christy  and
      Solorio, Thamar",
    booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/N19-1160/",
    doi = "10.18653/v1/N19-1160",
    pages = "1577--1587",
    abstract = "Combinatory categorial grammars are linguistically motivated and useful for semantic parsing, but costly to acquire in a supervised way and difficult to acquire in an unsupervised way. We propose an alternative making use of cross-lingual learning: an existing source-language parser is used together with a parallel corpus to induce a grammar and parsing model for a target language. On the PASCAL benchmark, cross-lingual CCG induction outperforms CCG induction from gold-standard POS tags on 3 out of 8 languages, and unsupervised CCG induction on 6 out of 8 languages. We also show that cross-lingually induced CCGs reflect syntactic properties of the target languages."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="evang-2019-cross">
    <titleInfo>
        <title>Cross-lingual CCG Induction</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Kilian</namePart>
        <namePart type="family">Evang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jill</namePart>
            <namePart type="family">Burstein</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Christy</namePart>
            <namePart type="family">Doran</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Thamar</namePart>
            <namePart type="family">Solorio</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Combinatory categorial grammars are linguistically motivated and useful for semantic parsing, but costly to acquire in a supervised way and difficult to acquire in an unsupervised way. We propose an alternative making use of cross-lingual learning: an existing source-language parser is used together with a parallel corpus to induce a grammar and parsing model for a target language. On the PASCAL benchmark, cross-lingual CCG induction outperforms CCG induction from gold-standard POS tags on 3 out of 8 languages, and unsupervised CCG induction on 6 out of 8 languages. We also show that cross-lingually induced CCGs reflect syntactic properties of the target languages.</abstract>
    <identifier type="citekey">evang-2019-cross</identifier>
    <identifier type="doi">10.18653/v1/N19-1160</identifier>
    <location>
        <url>https://aclanthology.org/N19-1160/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>1577</start>
            <end>1587</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-lingual CCG Induction
%A Evang, Kilian
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F evang-2019-cross
%X Combinatory categorial grammars are linguistically motivated and useful for semantic parsing, but costly to acquire in a supervised way and difficult to acquire in an unsupervised way. We propose an alternative making use of cross-lingual learning: an existing source-language parser is used together with a parallel corpus to induce a grammar and parsing model for a target language. On the PASCAL benchmark, cross-lingual CCG induction outperforms CCG induction from gold-standard POS tags on 3 out of 8 languages, and unsupervised CCG induction on 6 out of 8 languages. We also show that cross-lingually induced CCGs reflect syntactic properties of the target languages.
%R 10.18653/v1/N19-1160
%U https://aclanthology.org/N19-1160/
%U https://doi.org/10.18653/v1/N19-1160
%P 1577-1587
Markdown (Informal)
[Cross-lingual CCG Induction](https://aclanthology.org/N19-1160/) (Evang, NAACL 2019)
ACL
- Kilian Evang. 2019. Cross-lingual CCG Induction. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1577–1587, Minneapolis, Minnesota. Association for Computational Linguistics.