@inproceedings{han-etal-2019-permanent,
title = "No Permanent {F}riends or Enemies: Tracking Relationships between Nations from News",
author = "Han, Xiaochuang and
Choi, Eunsol and
Tan, Chenhao",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1167",
doi = "10.18653/v1/N19-1167",
pages = "1660--1676",
abstract = "Understanding the dynamics of international politics is important yet challenging for civilians. In this work, we explore unsupervised neural models to infer relations between nations from news articles. We extend existing models by incorporating shallow linguistics information and propose a new automatic evaluation metric that aligns relationship dynamics with manually annotated key events. As understanding international relations requires carefully analyzing complex relationships, we conduct in-person human evaluations with three groups of participants. Overall, humans prefer the outputs of our model and give insightful feedback that suggests future directions for human-centered models. Furthermore, our model reveals interesting regional differences in news coverage. For instance, with respect to US-China relations, Singaporean media focus more on {``}strengthening{''} and {``}purchasing{''}, while US media focus more on {``}criticizing{''} and {``}denouncing{''}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="han-etal-2019-permanent">
<titleInfo>
<title>No Permanent Friends or Enemies: Tracking Relationships between Nations from News</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaochuang</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eunsol</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenhao</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding the dynamics of international politics is important yet challenging for civilians. In this work, we explore unsupervised neural models to infer relations between nations from news articles. We extend existing models by incorporating shallow linguistics information and propose a new automatic evaluation metric that aligns relationship dynamics with manually annotated key events. As understanding international relations requires carefully analyzing complex relationships, we conduct in-person human evaluations with three groups of participants. Overall, humans prefer the outputs of our model and give insightful feedback that suggests future directions for human-centered models. Furthermore, our model reveals interesting regional differences in news coverage. For instance, with respect to US-China relations, Singaporean media focus more on “strengthening” and “purchasing”, while US media focus more on “criticizing” and “denouncing”.</abstract>
<identifier type="citekey">han-etal-2019-permanent</identifier>
<identifier type="doi">10.18653/v1/N19-1167</identifier>
<location>
<url>https://aclanthology.org/N19-1167</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1660</start>
<end>1676</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T No Permanent Friends or Enemies: Tracking Relationships between Nations from News
%A Han, Xiaochuang
%A Choi, Eunsol
%A Tan, Chenhao
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F han-etal-2019-permanent
%X Understanding the dynamics of international politics is important yet challenging for civilians. In this work, we explore unsupervised neural models to infer relations between nations from news articles. We extend existing models by incorporating shallow linguistics information and propose a new automatic evaluation metric that aligns relationship dynamics with manually annotated key events. As understanding international relations requires carefully analyzing complex relationships, we conduct in-person human evaluations with three groups of participants. Overall, humans prefer the outputs of our model and give insightful feedback that suggests future directions for human-centered models. Furthermore, our model reveals interesting regional differences in news coverage. For instance, with respect to US-China relations, Singaporean media focus more on “strengthening” and “purchasing”, while US media focus more on “criticizing” and “denouncing”.
%R 10.18653/v1/N19-1167
%U https://aclanthology.org/N19-1167
%U https://doi.org/10.18653/v1/N19-1167
%P 1660-1676
Markdown (Informal)
[No Permanent Friends or Enemies: Tracking Relationships between Nations from News](https://aclanthology.org/N19-1167) (Han et al., NAACL 2019)
ACL