@inproceedings{ma-etal-2019-learning,
title = "Learning to Stop in Structured Prediction for Neural Machine Translation",
author = "Ma, Mingbo and
Zheng, Renjie and
Huang, Liang",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1187/",
doi = "10.18653/v1/N19-1187",
pages = "1884--1889",
abstract = "Beam search optimization (Wiseman and Rush, 2016) resolves many issues in neural machine translation. However, this method lacks principled stopping criteria and does not learn how to stop during training, and the model naturally prefers longer hypotheses during the testing time in practice since they use the raw score instead of the probability-based score. We propose a novel ranking method which enables an optimal beam search stop- ping criteria. We further introduce a structured prediction loss function which penalizes suboptimal finished candidates produced by beam search during training. Experiments of neural machine translation on both synthetic data and real languages (German{\textrightarrow}English and Chinese{\textrightarrow}English) demonstrate our pro- posed methods lead to better length and BLEU score."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2019-learning">
<titleInfo>
<title>Learning to Stop in Structured Prediction for Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mingbo</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Renjie</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Beam search optimization (Wiseman and Rush, 2016) resolves many issues in neural machine translation. However, this method lacks principled stopping criteria and does not learn how to stop during training, and the model naturally prefers longer hypotheses during the testing time in practice since they use the raw score instead of the probability-based score. We propose a novel ranking method which enables an optimal beam search stop- ping criteria. We further introduce a structured prediction loss function which penalizes suboptimal finished candidates produced by beam search during training. Experiments of neural machine translation on both synthetic data and real languages (German→English and Chinese→English) demonstrate our pro- posed methods lead to better length and BLEU score.</abstract>
<identifier type="citekey">ma-etal-2019-learning</identifier>
<identifier type="doi">10.18653/v1/N19-1187</identifier>
<location>
<url>https://aclanthology.org/N19-1187/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1884</start>
<end>1889</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning to Stop in Structured Prediction for Neural Machine Translation
%A Ma, Mingbo
%A Zheng, Renjie
%A Huang, Liang
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F ma-etal-2019-learning
%X Beam search optimization (Wiseman and Rush, 2016) resolves many issues in neural machine translation. However, this method lacks principled stopping criteria and does not learn how to stop during training, and the model naturally prefers longer hypotheses during the testing time in practice since they use the raw score instead of the probability-based score. We propose a novel ranking method which enables an optimal beam search stop- ping criteria. We further introduce a structured prediction loss function which penalizes suboptimal finished candidates produced by beam search during training. Experiments of neural machine translation on both synthetic data and real languages (German→English and Chinese→English) demonstrate our pro- posed methods lead to better length and BLEU score.
%R 10.18653/v1/N19-1187
%U https://aclanthology.org/N19-1187/
%U https://doi.org/10.18653/v1/N19-1187
%P 1884-1889
Markdown (Informal)
[Learning to Stop in Structured Prediction for Neural Machine Translation](https://aclanthology.org/N19-1187/) (Ma et al., NAACL 2019)
ACL
- Mingbo Ma, Renjie Zheng, and Liang Huang. 2019. Learning to Stop in Structured Prediction for Neural Machine Translation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1884–1889, Minneapolis, Minnesota. Association for Computational Linguistics.