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Abstract

Neural Networks trained with gradient descent
are known to be susceptible to catastrophic
forgetting caused by parameter shift during the
training process. In the context of Neural Ma-
chine Translation (NMT) this results in poor
performance on heterogeneous datasets and on
sub-tasks like rare phrase translation. On the
other hand, non-parametric approaches are im-
mune to forgetting, perfectly complementing
the generalization ability of NMT. However,
attempts to combine non-parametric or re-
trieval based approaches with NMT have only
been successful on narrow domains, possibly
due to over-reliance on sentence level retrieval.
We propose a novel n-gram level retrieval ap-
proach that relies on local phrase level simi-
larities, allowing us to retrieve neighbors that
are useful for translation even when overall
sentence similarity is low. We complement
this with an expressive neural network, al-
lowing our model to extract information from
the noisy retrieved context. We evaluate our
semi-parametric NMT approach on a hetero-
geneous dataset composed of WMT, IWSLT,
JRC-Acquis and OpenSubtitles, and demon-
strate gains on all 4 evaluation sets. The semi-
parametric nature of our approach opens the
door for non-parametric domain adaptation,
demonstrating strong inference-time adapta-
tion performance on new domains without the
need for any parameter updates.

1 Introduction

Over the last few years, neural sequence to se-
quence models (Sutskever et al., 2014; Bahdanau
et al., 2015; Cho et al., 2014) have revolution-
ized the field of machine translation by signif-
icantly improving translation quality over their
phrase based counterparts (Sennrich et al., 2015;
Wu et al., 2016; Zhou et al., 2016). With more
gains arising from continued research on new neu-
ral network architectures and accompanying train-

ing techniques (Vaswani et al., 2017; Gehring
et al., 2017; Chen et al., 2018), NMT researchers,
both in industry and academia, have doubled down
on their ability to train high capacity models on
large corpora with gradient based optimization.

However, despite huge improvements in overall
translation quality NMT has shown some glaring
weaknesses, including idiom processing, and rare
word or phrase translation (Koehn and Knowles,
2017; Isabelle et al., 2017; Lee et al., 2018) -
tasks that should be easy if the model could re-
tain learned information from individual training
examples. NMT has also been shown to per-
form poorly when dealing with multi-domain data
(Farajian et al., 2017a). This ‘catastrophic for-
getting’ problem has been well-studied in tradi-
tional neural network literature, caused by param-
eter shift during the training process (McCloskey
and Cohen, 1989; Santoro et al., 2016). Non-
parametric methods, on the other hand, are re-
sistant to forgetting but are prone to over-fitting
due to their reliance on individual training exam-
ples. We focus on a non-parametric extension to
NMT, hoping to combine the generalization abil-
ity of neural networks with the eidetic memory
of non-parametric methods. Given a translation
query, we rely on an external retrieval mechanism
to find similar source-target instances in the train-
ing corpus, which are then utilized by the model.

There has been some work on semi-parametric
NMT (Gu et al., 2017; Zhang et al., 2018b; Cao
and Xiong, 2018), but its effectiveness has been
confined to narrow domain datasets. Existing ap-
proaches have relied on sentence level similarity
metrics for retrieval, which works well for do-
mains with high train-test overlap, but fails to re-
trieve useful candidates for broad domains. Even
if we could find training instances with overlap-
ping phrases it’s likely that the information in most
retrieved source-target pairs is noise for the pur-
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pose of translating the current query.
To retrieve useful candidates when sentence

similarity is low, we use n-gram retrieval instead
of sentence retrieval. This results in neighbors
which have high local overlap with the source sen-
tence, even if they are significantly different in
terms of overall sentence similarity. This is in-
tuitively similar to utilizing information from a
phrase table (Koehn et al., 2003) within NMT
(Dahlmann et al., 2017), without losing the global
context lost when constructing the phrase table.
We also propose another simple extension using
dense vectors for n-gram retrieval which allows us
to exploit similarities beyond lexical overlap.

To effectively extract the signal from the noisy
retrieved neighbors, we develop an extension of
the approach proposed in (Cao and Xiong, 2018).
While (Cao and Xiong, 2018) encode the retrieved
targets without any context, we incorporate in-
formation from the current and retrieved sources
while encoding the retrieved target, in order to dis-
tinguish useful information from noise.

We evaluate our semi-parametric NMT ap-
proach on two tasks.

• We evaluate our approach on a multi-domain
English-French corpus constructed from nar-
row domain datasets like JRC-Acquis (Stein-
berger et al., 2006; Tiedemann) and Open-
Subtitles (Tiedemann, 2009)1, and the stan-
dard IWSLT and WMT bilingual corpora, as
described in Sections 3 and 4. Our results, for
the first time, indicate that semi-parametric
NMT can be beneficial beyond narrow do-
main tasks, demonstrating gains of around
0.5 BLEU on WMT, and huge gains rang-
ing from 2-10 BLEU points on IWSLT, JRC-
Acquis and OpenSubtitles, when compared
to a strong sequence to sequence baseline.

• The semi-parametric nature of our model en-
ables non-parametric inference-time adapta-
tion to new datasets, without the need for
any parameter updates. When trained on
WMT and evaluated on the other datasets,
our model out-performs fine-tuning based
adaptation (Luong and Manning, 2015) on
JRC-Acquis and OpenSubtitles, and signif-
icantly improves performance over the non-
adapted model on IWSLT.

1http://www.opensubtitles.org/

2 Semi-parametric NMT

Standard approaches for Neural Machine Trans-
lation rely on seq2seq architectures (Sutskever
et al., 2014; Bahdanau et al., 2015), where given
a source sequence X = {x1, x2, . . . xT x} and
a target sequence Y = {y1, y2, . . . yT y}, the
goal is to model the probability distribution,
p(yt|X, y1, . . . yt−1).

Semi-parametric NMT (Dahlmann et al., 2017;
Gu et al., 2017) approaches this learning prob-
lem with a different formulation, by modeling
p(yt|X, y1, . . . yt−1,ΦX) instead, where ΦX =
{(X1, Y 1) . . . (XN , Y N )} is the set of sentence
pairs where the source sentence is a neighbor of
X , retrieved from the training corpus using some
similarity metric. This relies on a two step ap-
proach - the retrieval stage finds training instances,
(Xi, Y i), similar to the source sentenceX , and the
translation stage generates the target sequence Y
given X and ΦX . We follow this setup, proposing
improvements to both stages in order to enhance
the applicability of semi-parametric NMT to more
general translation tasks.

2.1 Retrieval Approaches

Existing approaches have proposed using off the
shelf search engines for the retrieval stage. How-
ever, our objective differs from traditional infor-
mation retrieval, since the goal of retrieval in semi-
parametric NMT is to find neighbors which might
improve translation performance, which might not
correlate with maximizing sentence similarity.

Our baseline strategy relies on a sentence level
similarity score, similar to those used for standard
information retrieval tasks (Robertson, 2004). We
compare this against finer-grained n-gram retrieval
using the same similarity metric. We also propose
a dense vector based n-gram retrieval strategy, us-
ing representations extracted from a pre-trained
NMT model.

2.1.1 IDF Based Sentence Retrieval

Our baseline approach relies on a simple inverse
document frequency (IDF) based similarity score.
We define the IDF score of any token, t, as ft =

log(‖C‖nt
), where ‖C‖ is the number of sentence

pairs in training corpus and nt is the number of
sentences t occurs in. Let any two sentence pairs
in the corpus be (Xi, Y i) and (Xj , Y j). Then
we define the similarity between (Xi, Y i) and
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(Xj , Y j) by,

sim(Xi, Xj) = 2×Σt∈(Xi∩Xj)ft−Σt∈(Xi∪Xj)ft
(1)

For every sentence in the training, dev and test cor-
pora, we find the N most similar training sentence
pairs and provide them as context to NMT.

2.1.2 IDF Based N-Gram Retrieval
Motivated by phrase based SMT, we retrieve
neighbors which have high local, sub-sentence
level overlap with the source sentence. We adapt
our approach to retrieve n-grams instead of sen-
tences. We note that the similarity metric defined
above for sentences is equally applicable for n-
gram retrieval.

Let X = (t1, ...tT ) be a sentence. Then the set
of all possible n-grams of X, for a given n, can be
defined as Sn

X = {(ti, ...ti+n)∀ 1 ≤ i ≤ T} (also
including padding at the end). To reduce the num-
ber of n-grams used to represent every sentence,
we define the reduced set of n-grams for X to be
Ŝn
X = {(ti, ...ti+n) ∀ 1 ≤ i ≤ T, i mod n

2 = 1}.
We represent every sentence by their reduced n-

gram set. For every n-gram in Ŝn
X , we find the

closest n-gram in the training set using the IDF
similarity defined above. For each retrieved n-
gram we find the corresponding sentence (In case
an n-gram is present in multiple sentences, we
choose one randomly). The set of neighbors of
X is then the set of all sentences in the training
corpus that contain an n-gram that maximizes the
n-gram similarity with any n-gram in Ŝn

X .
To capture phrases of different lengths we use

multiple n-gram widths, n. In case a sentence has
already been added to the retrieved set, we find the
next most similar sentence to avoid having dupli-
cates. The number of neighbors retrieved for each
source sentence is proportional to its length.

2.1.3 Dense Vector Based N-Gram Retrieval
We also extend our n-gram retrieval strategy with
dense vector based n-gram representations. The
objective behind using a dense vector based ap-
proach is to incorporate information relevant to the
translation task in the retrieval stage. We use a pre-
trained Transformer Base (Vaswani et al., 2017)
encoder trained on WMT to generate sub-word
level dense representations for the sentence. The
representation for each n-gram is now defined to
be the mean of the representations of all its con-
stituent sub-words. We use the L2 distance of

n-gram representations as the retrieval criterion.
Note that we use a sub-word level decomposition
of sentences for dense retrieval, as compared to
word-level for IDF based retrieval (i.e., n-grams
are composed of sub-words instead of words).

Following the approach described for IDF based
n-gram retrieval, we use multiple values of n, and
remove duplicate neighbors while creating the re-
trieved set.

Figure 1: Architecture of the Conditional Source Tar-
get Memory. The retrieved targets, Y i, are encoded in
a transformer encoder, incorporating the attention con-
text from the retrieved sources, Xi. In turn, the re-
trieved sources, Xi, are encoded while incorporating
context from the current translation source, X .

2.2 NMT with Context Retrieval

To incorporate the retrieved neighbors, ΦX , within
the NMT model, we first encode them using
Transformer layers, as described in subsection
2.2.1. This encoded memory is then used within
the decoder via an attention mechanism, as de-
scribed in subsection 2.2.2.

2.2.1 Conditional Source Target Memory
We now describe how each retrieved translation
pair, (Xi, Y i), is encoded. This architecture is il-
lustrated in Figure 1.

• We first encode the retrieved source, Xi, in a
Transformer layer. Apart from self-attention,
we incorporate information from the encoder
representation of the current source,X , using
decoder style cross-attention.
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Figure 2: Architecture of the gated attention mechanism used in the multi-source transformer decoder.

• The retrieved target, Y i, is encoded in a sim-
ilar manner, attending the encoded represen-
tation of Xi generated in the previous step.

The encoded representations for all targets,
{Y i, 1 ≤ i ≤ N}, are then concatenated along
the time axis to form the Conditional Source Tar-
get Memory (CSTM).

2.2.2 Gated Multi-Source Attention
We use gated multi-source attention to combine
the context from the source encoder representa-
tions and the CSTM. This is similar to the gated
attention employed by (Cao and Xiong, 2018). We
use a Transformer based decoder that attends to
both, the encoder outputs and the CSTM, in ev-
ery cross-attention layer. The rest of the decoder
architecture remains unchanged.

Let the context vectors obtained by applying
multi-head attention to the source and memory,
with query qt be cst and cmt respectively. Then the
gated context vector, ct, is given by,

gt = σ(Wgsc
s
t +Wgmc

m
t ) (2)

ct = gt ∗ cst + (1− gt) ∗ cmt (3)

where gt is the scalar gating variable at time-step t,
and Wgs and Wgm are learned parameters. These
steps are illustrated in Figure 2.

3 Experiments

3.1 Data and Evaluation
We compare the performance of a standard Trans-
former Base model and our semi-parametric NMT
approach on an English-French translation task.

We create a new heterogeneous dataset, con-
structed from a combination of the WMT train-
ing set (36M pairs), the IWSLT bilingual corpus
(237k pairs), JRC-Acquis (797k pairs)2 and Open-
Subtitles (33M pairs)3. For WMT, we use new-
stest 13 for validation and newstest 14 for test.
For IWSLT, we use a combination of the test cor-
pora from 2012-14 for validation and test 2015 for
eval. For OpenSubtitles and JRC-Acquis, we cre-
ate our own splits for validation and test, since
no benchmark split is publicly available. After
deduping, the JRC-Acquis test and validation set
contain 6574 and 5121 sentence pairs respectively.
The OpenSubtitles test and validation sets contain
3975 and 3488 pairs. For multi-domain training,
the validation set is a concatenation of the four in-
dividual validation sets.

All datasets are tokenized with the Moses tok-
enizer (Koehn et al., 2007) and mixed without any
sampling. We use a shared vocabulary Sentence-
Piece Model (Kudo and Richardson, 2018) for
sub-word tokenization, with a vocabulary size
of 32000 tokens. We train each model for 1M
steps, and choose the best checkpoint from the last
5 checkpoints based on validation performance.
BLEU scores are computed with tokenized true-
cased output and references with multi-bleu.perl
from Moses.

For IDF based sentence retrieval, for each sen-
tence in the training, dev and test corpus, we use
N = 10 neighbors per example during both, train-
ing and evaluation. For the N-Gram level re-
trieval strategies, we used N = 10 neighbors dur-

2From http://opus.nlpl.eu/JRC-Acquis.php
3From http://opus.nlpl.eu/OpenSubtitles.php
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Model Data newstest 14 IWSLT 2015 OpenSub JRC-Acquis
TransformerBase Multi Domain (MD) 41.92 43.17 26.67 56.19
+ CSTM MD + IDF Sentence 40.89 42.35 28.25 65.38
+ CSTM MD + IDF N-Gram 41.92 45.09 28.74 66.39
+ CSTM MD + Dense N-Gram 42.41 45.02 29.06 66.92

Table 1: Comparison of test translation quality (BLEU) with different retrieval strategies. Multi-domain is a con-
catenation of all 4 datasets. IDF Sentence, IDF-NGram and Dense N-Gram correspond to multi-domain datasets
constructed with the different retrieval strategies.

source ‘The top copy of the passenger waybill shall be kept on the bus or coach
throughout the journey to which it refers .’

neighbor source ‘The top copy of the journey form shall be kept on the vehicle during the whole
of the journey to which it refers .’

baseline translation ‘La copie supérieure de la lettre de transport de voyageurs doit être conservée
dans l’ autobus ou l’ autocar tout au long du voyage auquel elle se rapporte .’

neighbor target ‘L’ original de la feuille de route doit se trouver à bord du véhicule pendant
toute la durée du voyage pour lequel elle a été établie .’

translation ‘L’ original de la feuille de route doit se trouver à bord de l’ autobus ou de l’
autocar pendant toute la durée du voyage pour lequel elle a été établie .’

reference ‘L’ original de la feuille de route doit se trouver à bord de l’ autobus ou de l’
autocar pendant toute la durée du voyage pour lequel elle a été établie .’

Table 2: A comparison of model outputs on a sample from the JRC-Acquis dataset. This model was trained
using IDF based sentence level retrieval with Conditional Source Target Memory. The different colors and text
formatting (underlined, italic, bold) represent different overlapping phrases within the model output, the retrieved
target and the reference translation.

ing training, and neighbors corresponding to all n-
grams during decoding. This was meant to limit
memory requirements and enable the model to fit
on P100s during training. We used n-gram width,
n = {6, 10, 18}, for both IDF and dense vector
based n-gram retrieval approaches. For scalabil-
ity reasons, we restricted the retrieval set to the in-
domain training corpus, i.e. neighbors for all train,
dev and test sentences in the JRC-Acquis corpus
were retrieved from the JRC-Acquis training split,
and similarly for the other datasets.

3.2 Hyper-parameters and Optimization

For our baseline model we use the standard Trans-
former Base model (Vaswani et al., 2017). For the
semi-parametric model, all our hyper-parameters
for attention (8 attention heads), model dimen-
sions (512) and hidden dimensions (2048), includ-
ing those used in the CSTM memory are equiva-
lent to Transformer Base.

The Transformer baselines are trained on 16
GPUs, with the learning rate, warm-up schedule
and batching scheme described in (Vaswani et al.,

2017). The semi-parametric models were trained
on 32 GPUs with each replica split over 2 GPUs,
one to train the translation model and the other
for computing the CSTM. We used a conservative
learning rate schedule (3, 40K) (Chen et al., 2018)
to train the semi-parametric models.

We apply a dropout rate(Srivastava et al., 2014)
of 0.1 to all inputs, residuals, attentions and
ReLU connections in both models. We use Adam
(Kingma and Ba, 2014) to train all models, and
apply label smoothing with an uncertainty of 0.1
(Szegedy et al., 2015). In addition to the trans-
former layers, layer normalization (Ba et al., 2016)
was applied to the output of the CSTM. All mod-
els are implemented in Tensorflow-Lingvo (Shen
et al., 2019).

4 Results

We compare the test performance of a multi-
domain Transformer Base and our semi-
parametric model using dense vector based
n-gram retrieval and CSTM in Table 1. Apart
from significantly improving performance by
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source ‘Consciousness also is what makes life worth living .’
neighbor source ‘So in the last 10 years and the hope for the future , we ’ve seen the beginnings

of a science of positive psychology , a science of what makes life worth living
.’

baseline translation ‘La conscience est aussi ce qui rend la vie valable .’
neighbor target ‘Donc , depuis 10 ans , et , espérons-le , à l’ avenir nous assistons à l’

émergence d’ une science de la psychologie positive : une science qui fait
en sorte que la vie vaille la peine d’ être vécue .’

translation ‘La conscience est aussi ce qui fait que la vie vaut la peine d’ être vécue .’
reference ‘La conscience est aussi ce qui fait que la vie vaut la peine d’ être vécue .’

Table 3: A comparison of model outputs on a sample from IWSLT. This model was trained using IDF based n-gram
retrieval with Conditional Source Target Memory. N-Gram level retrieval results in finding neighbors with high
local overlap, even when the rest of the sentences are dissimilar.

source ‘I was expecting to see gnashing of teeth and a fight breaking out at the gate
.’

neighbor source ‘One could almost hear the collective gnashing of teeth in the US , especially
in the Congress .’

baseline translation ‘J’ espérais voir des dents brûlantes et une bataille éclater à la porte .’
neighbor target ‘On a presque entendre les dents grincer aux États-Unis , surtout au Congrès

.’
translation ‘Je m’ attendais à voir des grincements de dents et une bagarre éclater à la

porte .’
reference ‘Je m’ attendais à voir des grincements de dents et une bagarre éclater à la

porte .’

Table 4: A comparison of model outputs on a sample from WMT. This model was trained using IDF based n-gram
retrieval with Conditional Source Target Memory. N-Gram level retrieval results in finding neighbors with high
local overlap, even when the rest of the sentences are dissimilar.

more than 10 BLEU points on JRC-Acquis, 2-3
BLEU on OpenSubtitles and IWSLT, we notice a
moderate gain of 0.5 BLEU points on WMT 14.

4.1 Comparison of retrieval strategies

We compare the performance of all 3 retrieval
strategies in Table 1. The semi-parametric model
with sentence level retrieval out-performs the
seq2seq model by a huge margin on JRC-Acquis
and OpenSubtitles. A sample from the JRC-
Acquis dataset where the semi-parametric ap-
proach improves significantly over the neural ap-
proach is included in Table 2. We notice that there
is a lot of overlap between the source sentence
and the retrieved source, resulting in the semi-
parametric model copying large chunks from the
retrieved target. However, its performance is no-
ticeably worse on WMT and IWSLT. Based on
a manual inspection of the retrieved candidates,
we attribute these losses to retrieval failures. For

broad domain datasets like WMT and IWSLT sen-
tence retrieval fails to find good candidates.

Switching to n-gram level retrieval brings the
WMT performance close to the seq2seq approach,
and IWSLT performance to 2 BLEU points above
the baseline model. Representative examples from
IWSLT and WMT where n-gram retrieval im-
proves over sentence level retrieval can be seen in
Tables 3 and 4. Despite the majority of the re-
trieved neighbor having nothing in common with
the source sentence, n-gram retrieval is able to find
neighbors that contain local overlaps.

Using dense n-gram retrieval allows us to move
beyond lexical overlap and retrieve semantically
similar n-grams even when the actual tokens are
different. As a result, dense n-gram retrieval im-
proves performance over all our models on all 4
datasets. An illustrative example from WMT is
included in Table 5.
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source ‘The artist died last Sunday at the age of 71 .’
neighbor source ‘A former minister George Thomson passed away last week at the age of 87 .’
baseline translation ‘L’ artiste est mort dimanche dernier à l’ âge de 71 ans .’
neighbor target ‘George Thomson , ancien ministre , est décédé la semaine dernière à l’ âge

de 87 ans .’
translation ‘L’ artiste est décédé dimanche dernier à l’ âge de 71 ans .’
reference ‘L’ artiste est décédé dimanche dernier , à l’ âge de 71 ans . ’

Table 5: A comparison of model outputs on a sample from WMT. This model was trained using dense vector based
n-gram retrieval with Conditional Source Target Memory. Dense vector based n-gram retrieval allows us to find
semantically similar phrases, even when the lexical context is dissimilar.

Model newstest 14 IWSLT 2015 OpenSub JRC-Acquis
No Memory 41.92 43.17 26.67 56.19
TM 41.64 44.32 27.38 64.25
CTM 41.87 44.76 27.74 65.18
CSTM 42.41 45.02 29.06 66.92

Table 6: Comparison of test translation quality (BLEU) with different memory architectures. All models are
trained on the Dense N-Gram Multi-Domain dataset. CSTM corresponds to the proposed Conditional Source
Target Memory. CTM corresponds to Conditional Target Memory, where we ignore the retrieved sources while
encoding the retrieved targets, and directly attend the encoding of the current source, X . TM corresponds to
encoding the retrieved targets without any context.

4.2 Memory Ablation Experiments

We report the performance of the various mem-
ory ablations in Table 6. We first remove the re-
trieved sources, Xi, from the CSTM, resulting in
an architecture where the encoding of a retrieved
target, Y i, only incorporates information from the
source X , represented by the row CTM in the ta-
ble. This results in a clear drop in performance
on all datasets. We ablate further by removing the
attention to the original source X , resulting in a
slightly smaller drop in performance (represented
by TM). These experiments indicate that incorpo-
rating context from the sources significantly con-
tributes to performance, by allowing the model to
distinguish between relevant context and noise.

5 Non-Parametric Adaptation

Using a semi-parametric formulation for MT
opens up the possibility of non-parametric adap-
tation. The biggest advantage of this approach is
the possibility of training a single massively cus-
tomizable model which can be adapted to any new
dataset or document at inference time, by just up-
dating the retrieval dataset.

We evaluate our model’s performance on non-
parametric adaptation and compare it against a
fully fine-tuned model. In this setting, we train a

baseline model and a dense n-gram based semi-
parametric model on the WMT training corpus.
We only retrieve and train on examples from the
WMT corpus during training. We use the same
hyper-parameters and training approaches used for
the multi-domain experiments, as in Section 3.

The baseline model is then fine-tuned inde-
pendently on JRC-Acquis, OpenSubtitles and
IWSLT. The semi-parametric model is adapted
non-parametrically to these three datasets, without
any parameter updates. Adaptation is achieved via
the retrieval mechanism - while evaluating, we re-
trieve similar examples from their respective train-
ing datasets. To quantify headroom, we also fine-
tune our semi-parametric model on each of these
datasets.

The results for non-parametric adaptation ex-
periments are documented in Table 7. We no-
tice that the non-parametric adaptation strategy
significantly out-performs the base model on all
4 datasets. More importantly, the we find that
our approach is capable of adapting to both, JRC-
Acquis and OpenSubtitles, via just the retrieval
apparatus, and out-performs the fully fine-tuned
model indicating that non-parametric adaptation
might be a reasonable approach when adapting to
a lot of narrow domains or documents.
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Adaptation Strategy newstest 14 IWSLT 2015 OpenSub JRC-Acquis
Base 41.16 39.75 22.92 53.1
Fine-tuning - 42.87 26.55 62.99
Non-Parametric (NP) 41.57 40.95 27.09 64.93
NP + Fine-tuning - 43.82 29.12 66.72

Table 7: Comparison of test translation quality (BLEU) with different adaptation strategies. The base model
(Transformer Base) is trained on the WMT dataset. Fine-tuning corresponds to fine-tuning based adaptation,
where we initialize the domain-specific model from the WMT pre-trained Base model, and fine-tune it on the
in-domain dataset for a few epochs. Non-parametric corresponds to our semi-parametric NMT model, adapted to
in-domain data during inference by retrieving neighbors from the in-domain training corpus.

In-domain fine-tuning on top of non-parametric
adaptation further improves by 2 BLEU points on
all datasets, increasing the gap even further with
the seq2seq adapted models.

6 Related Work

Tools incorporating information from individ-
ual translation pairs, or translation memories
(Lagoudaki; Reinke, 2013), have been widely uti-
lized by human translators in the industry. There
have been a few efforts attempting to combine
non-parametric methods with NMT (Gu et al.,
2017; Zhang et al., 2018b; Cao and Xiong, 2018),
but the key difference of our approach is the in-
troduction of local, sub-sentence level similarity
in the retrieval process, via n-gram level retrieval.
Combined with our architectural improvements,
motivated by the target encoder and gated atten-
tion from (Cao and Xiong, 2018) and the extended
transformer model from (Zhang et al., 2018a),
our semi-parametric NMT model is able to out-
perform purely neural models in broad multi-
domain settings.

Some works have proposed using phrase tables
or the outputs of Phrase based MT within NMT
(Dahlmann et al., 2017; Zhang et al., 2017; Zhou
et al., 2017). While this reduces the noise present
within the retrieved translation pairs, it requires
training and maintaining a separate SMT system
which might introduce errors of its own.

Another class of methods requires fine-tuning
the entire NMT model to every instance at in-
ference time, using retrieved examples (Farajian
et al., 2017b; Wuebker et al., 2015), but these ap-
proaches require running expensive gradient de-
scent steps before every translation.

Beyond NMT, there have been a few other at-
tempts to incorporate non-parametric approaches
into neural generative models (Guu et al., 2018;

Hayati et al., 2018; Weston et al., 2018). This
strong trend towards combining neural genera-
tive models with non-parametric methods is an
attempt to counter the weaknesses of neural net-
works, especially their failure to remember infor-
mation from individual training instances and the
diversity problem of seq2seq models (Vijayaku-
mar et al., 2016; Jiang and de Rijke, 2018).

While our approach relies purely on retrieval
from the training corpus, there has been quite a
lot of work, especially on Question Answering,
that attempts to find additional signals to perform
the supervised task in the presence of external
knowledge sources (Chen et al., 2017; Wang et al.,
2018). Retrieving information from unsupervised
corpora by utilizing multilingual representations
(Guo et al., 2018) might be another interesting ex-
tension of this work.

7 Conclusions and Future Work

We make two major technical contributions in this
work which enable us to improve the quality of
semi-parametric NMT on broad domain datasets.
First, we propose using n-gram retrieval, with
standard Inverse Document Frequency similarity
and with dense vector representations, that takes
into account local sentence similarities that are
critical to translation. As a result we are able to
retrieve useful candidates even for broad domain
tasks with little train-test overlap. Second, we
propose a novel architecture to encode retrieved
source-target pairs, allowing the model to distin-
guish useful information from noise by encoding
the retrieved targets in context of the current trans-
lation task.

We demonstrate, for the first time, that semi-
parametric methods can beat neural models by sig-
nificant margins on multi-domain Machine Trans-
lation. By successfully training semi-parametric
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neural models on a broad domain dataset (WMT),
we also open the door for non-parametric adapta-
tion, showing huge improvements on new domains
without any parameter updates.

While we constrain this work to retrieved con-
text, our architecture can be utilized to incorporate
information from other sources of context, includ-
ing documents, bilingual dictionaries etc. Using
dense representations for retrieval also allows ex-
tending semi-parametric neural methods to other
input modalities, including images and speech.

With this work, we hope to motivate further in-
vestigation into semi-parametric neural models for
and beyond Neural Machine Translation.

Acknowledgments

We would like to thank Naveen Arivazhagan,
Macduff Hughes, Dmitry Lepikhin, Mia Chen,
Yuan Cao, Ciprian Chelba, Zhifeng Chen, Melvin
Johnson and other members of the Google Brain
and Google Translate teams for their useful inputs
and discussions. We would also like to thank
the entire Lingvo development team for their
foundational contributions to this project.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations.

Qian Cao and Deyi Xiong. 2018. Encoding gated
translation memory into neural machine translation.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3042–3047. Association for Computational Linguis-
tics.

Danqi Chen, Adam Fisch, Jason Weston, and An-
toine Bordes. 2017. Reading wikipedia to an-
swer open-domain questions. arXiv preprint
arXiv:1704.00051.

Mia Xu Chen, Orhan Firat, Ankur Bapna, et al. 2018.
The best of both worlds: Combining recent ad-
vances in neural machine translation. arXiv preprint
arXiv:1804.09849.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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