@inproceedings{thomason-etal-2019-shifting,
title = "Shifting the Baseline: Single Modality Performance on Visual Navigation {\&} {QA}",
author = "Thomason, Jesse and
Gordon, Daniel and
Bisk, Yonatan",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1197/",
doi = "10.18653/v1/N19-1197",
pages = "1977--1983",
abstract = "We demonstrate the surprising strength of unimodal baselines in multimodal domains, and make concrete recommendations for best practices in future research. Where existing work often compares against random or majority class baselines, we argue that unimodal approaches better capture and reflect dataset biases and therefore provide an important comparison when assessing the performance of multimodal techniques. We present unimodal ablations on three recent datasets in visual navigation and QA, seeing an up to 29{\%} absolute gain in performance over published baselines."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="thomason-etal-2019-shifting">
<titleInfo>
<title>Shifting the Baseline: Single Modality Performance on Visual Navigation & QA</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jesse</namePart>
<namePart type="family">Thomason</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Gordon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Bisk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We demonstrate the surprising strength of unimodal baselines in multimodal domains, and make concrete recommendations for best practices in future research. Where existing work often compares against random or majority class baselines, we argue that unimodal approaches better capture and reflect dataset biases and therefore provide an important comparison when assessing the performance of multimodal techniques. We present unimodal ablations on three recent datasets in visual navigation and QA, seeing an up to 29% absolute gain in performance over published baselines.</abstract>
<identifier type="citekey">thomason-etal-2019-shifting</identifier>
<identifier type="doi">10.18653/v1/N19-1197</identifier>
<location>
<url>https://aclanthology.org/N19-1197/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>1977</start>
<end>1983</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Shifting the Baseline: Single Modality Performance on Visual Navigation & QA
%A Thomason, Jesse
%A Gordon, Daniel
%A Bisk, Yonatan
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F thomason-etal-2019-shifting
%X We demonstrate the surprising strength of unimodal baselines in multimodal domains, and make concrete recommendations for best practices in future research. Where existing work often compares against random or majority class baselines, we argue that unimodal approaches better capture and reflect dataset biases and therefore provide an important comparison when assessing the performance of multimodal techniques. We present unimodal ablations on three recent datasets in visual navigation and QA, seeing an up to 29% absolute gain in performance over published baselines.
%R 10.18653/v1/N19-1197
%U https://aclanthology.org/N19-1197/
%U https://doi.org/10.18653/v1/N19-1197
%P 1977-1983
Markdown (Informal)
[Shifting the Baseline: Single Modality Performance on Visual Navigation & QA](https://aclanthology.org/N19-1197/) (Thomason et al., NAACL 2019)
ACL
- Jesse Thomason, Daniel Gordon, and Yonatan Bisk. 2019. Shifting the Baseline: Single Modality Performance on Visual Navigation & QA. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1977–1983, Minneapolis, Minnesota. Association for Computational Linguistics.