@inproceedings{vylomova-etal-2019-contextualization,
title = "Contextualization of Morphological Inflection",
author = "Vylomova, Ekaterina and
Cotterell, Ryan and
Cohn, Trevor and
Baldwin, Timothy and
Eisner, Jason",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1203/",
doi = "10.18653/v1/N19-1203",
pages = "2018--2024",
abstract = "Critical to natural language generation is the production of correctly inflected text. In this paper, we isolate the task of predicting a fully inflected sentence from its partially lemmatized version. Unlike traditional morphological inflection or surface realization, our task input does not provide {\textquotedblleft}gold{\textquotedblright} tags that specify what morphological features to realize on each lemmatized word; rather, such features must be inferred from sentential context. We develop a neural hybrid graphical model that explicitly reconstructs morphological features before predicting the inflected forms, and compare this to a system that directly predicts the inflected forms without relying on any morphological annotation. We experiment on several typologically diverse languages from the Universal Dependencies treebanks, showing the utility of incorporating linguistically-motivated latent variables into NLP models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vylomova-etal-2019-contextualization">
<titleInfo>
<title>Contextualization of Morphological Inflection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Vylomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Eisner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Critical to natural language generation is the production of correctly inflected text. In this paper, we isolate the task of predicting a fully inflected sentence from its partially lemmatized version. Unlike traditional morphological inflection or surface realization, our task input does not provide “gold” tags that specify what morphological features to realize on each lemmatized word; rather, such features must be inferred from sentential context. We develop a neural hybrid graphical model that explicitly reconstructs morphological features before predicting the inflected forms, and compare this to a system that directly predicts the inflected forms without relying on any morphological annotation. We experiment on several typologically diverse languages from the Universal Dependencies treebanks, showing the utility of incorporating linguistically-motivated latent variables into NLP models.</abstract>
<identifier type="citekey">vylomova-etal-2019-contextualization</identifier>
<identifier type="doi">10.18653/v1/N19-1203</identifier>
<location>
<url>https://aclanthology.org/N19-1203/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>2018</start>
<end>2024</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Contextualization of Morphological Inflection
%A Vylomova, Ekaterina
%A Cotterell, Ryan
%A Cohn, Trevor
%A Baldwin, Timothy
%A Eisner, Jason
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F vylomova-etal-2019-contextualization
%X Critical to natural language generation is the production of correctly inflected text. In this paper, we isolate the task of predicting a fully inflected sentence from its partially lemmatized version. Unlike traditional morphological inflection or surface realization, our task input does not provide “gold” tags that specify what morphological features to realize on each lemmatized word; rather, such features must be inferred from sentential context. We develop a neural hybrid graphical model that explicitly reconstructs morphological features before predicting the inflected forms, and compare this to a system that directly predicts the inflected forms without relying on any morphological annotation. We experiment on several typologically diverse languages from the Universal Dependencies treebanks, showing the utility of incorporating linguistically-motivated latent variables into NLP models.
%R 10.18653/v1/N19-1203
%U https://aclanthology.org/N19-1203/
%U https://doi.org/10.18653/v1/N19-1203
%P 2018-2024
Markdown (Informal)
[Contextualization of Morphological Inflection](https://aclanthology.org/N19-1203/) (Vylomova et al., NAACL 2019)
ACL
- Ekaterina Vylomova, Ryan Cotterell, Trevor Cohn, Timothy Baldwin, and Jason Eisner. 2019. Contextualization of Morphological Inflection. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2018–2024, Minneapolis, Minnesota. Association for Computational Linguistics.