@inproceedings{ouyang-etal-2019-robust,
title = "A Robust Abstractive System for Cross-Lingual Summarization",
author = "Ouyang, Jessica and
Song, Boya and
McKeown, Kathy",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1204/",
doi = "10.18653/v1/N19-1204",
pages = "2025--2031",
abstract = "We present a robust neural abstractive summarization system for cross-lingual summarization. We construct summarization corpora for documents automatically translated from three low-resource languages, Somali, Swahili, and Tagalog, using machine translation and the New York Times summarization corpus. We train three language-specific abstractive summarizers and evaluate on documents originally written in the source languages, as well as on a fourth, unseen language: Arabic. Our systems achieve significantly higher fluency than a standard copy-attention summarizer on automatically translated input documents, as well as comparable content selection."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ouyang-etal-2019-robust">
<titleInfo>
<title>A Robust Abstractive System for Cross-Lingual Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jessica</namePart>
<namePart type="family">Ouyang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Boya</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kathy</namePart>
<namePart type="family">McKeown</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a robust neural abstractive summarization system for cross-lingual summarization. We construct summarization corpora for documents automatically translated from three low-resource languages, Somali, Swahili, and Tagalog, using machine translation and the New York Times summarization corpus. We train three language-specific abstractive summarizers and evaluate on documents originally written in the source languages, as well as on a fourth, unseen language: Arabic. Our systems achieve significantly higher fluency than a standard copy-attention summarizer on automatically translated input documents, as well as comparable content selection.</abstract>
<identifier type="citekey">ouyang-etal-2019-robust</identifier>
<identifier type="doi">10.18653/v1/N19-1204</identifier>
<location>
<url>https://aclanthology.org/N19-1204/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>2025</start>
<end>2031</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Robust Abstractive System for Cross-Lingual Summarization
%A Ouyang, Jessica
%A Song, Boya
%A McKeown, Kathy
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F ouyang-etal-2019-robust
%X We present a robust neural abstractive summarization system for cross-lingual summarization. We construct summarization corpora for documents automatically translated from three low-resource languages, Somali, Swahili, and Tagalog, using machine translation and the New York Times summarization corpus. We train three language-specific abstractive summarizers and evaluate on documents originally written in the source languages, as well as on a fourth, unseen language: Arabic. Our systems achieve significantly higher fluency than a standard copy-attention summarizer on automatically translated input documents, as well as comparable content selection.
%R 10.18653/v1/N19-1204
%U https://aclanthology.org/N19-1204/
%U https://doi.org/10.18653/v1/N19-1204
%P 2025-2031
Markdown (Informal)
[A Robust Abstractive System for Cross-Lingual Summarization](https://aclanthology.org/N19-1204/) (Ouyang et al., NAACL 2019)
ACL
- Jessica Ouyang, Boya Song, and Kathy McKeown. 2019. A Robust Abstractive System for Cross-Lingual Summarization. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2025–2031, Minneapolis, Minnesota. Association for Computational Linguistics.