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Abstract

The explicit use of syntactic information has
been proved useful for neural machine trans-
lation (NMT). However, previous methods re-
sort to either tree-structured neural networks
or long linearized sequences, both of which are
inefficient. Neural syntactic distance (NSD)
enables us to represent a constituent tree us-
ing a sequence whose length is identical to the
number of words in the sentence. NSD has
been used for constituent parsing, but not in
machine translation. We propose five strate-
gies to improve NMT with NSD. Experiments
show that it is not trivial to improve NMT
with NSD; however, the proposed strategies
are shown to improve translation performance
of the baseline model (+2.1 (En–Ja), +1.3 (Ja–
En), +1.2 (En–Ch), and +1.0 (Ch–En) BLEU).

1 Introduction

In recent years, neural machine translation (NMT)
has been developing rapidly and has become the
de facto approach for machine translation. To im-
prove the performance of the conventional NMT
models (Sutskever et al., 2014; Bahdanau et al.,
2014), one effective approach is to incorporate
syntactic information into the encoder and/or de-
coder of the baseline model.

Based on how the syntactic information is
represented, there are two categories of syn-
tactic NMT methods: (1) those that use tree-
structured neural networks (NNs) to represent syn-
tax structures (Eriguchi et al., 2016; Hashimoto
and Tsuruoka, 2017), and (2) those that use
linear-structured NNs to represent linearized syn-
tax structures (Li et al., 2017; Ma et al., 2017,
2018). For the first category, there is a direct
corresponding relationship between the syntactic
structure and the NN structure, but the complex-
ity of NN structures usually makes training in-
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efficient. In contrast, for the second category,
syntactic structures are linearized and represented
using linear-structured recurrent neural networks
(RNNs), but the linearized sequence can generally
be quite long and therefore training efficiency is
still a problem. Although using a shorter sequence
may improve the efficiency, some syntactic infor-
mation is lost.

We propose a method of using syntactic infor-
mation in NMT that overcomes the disadvantages
of both methods. The basis of our method is the
neural syntactic distance (NSD), a recently pro-
posed concept used for constituent parsing (Shen
et al., 2018; Gómez-Rodrı́guez and Vilares, 2018).
NSD makes it possible to represent a constituent
tree as a sequence whose length is identical to the
number of words in the sentence (almost) without
losing syntactic information. However, there are
no previous studies that use NSD in NMT. More-
over, as demonstrated by our experiments, using
NSD in NMT is far from straightforward, so we
propose five strategies and verify the effects em-
pirically. The strategies are summarized below.

• Extend NSD to dependency trees, which is
inspired by the dependency language model
(Shen et al., 2010).
• Use NSDs as input sequences1, where an

NSD is regarded as a linguistic input feature
(Sennrich and Haddow, 2016).
• Use NSDs as output sequences, where the

NMT and prediction of the NSD are simul-
taneously trained through multi-task learning
(Firat et al., 2016).
• Use NSD as positional encoding (PE), which

is a syntactic extension of the PE of the
Transformer (Vaswani et al., 2017).

1Throughout this paper, ”input” means the input of an en-
coder or a decoder rather than the input of the NMT model
(i.e., only source sentences), and ”output” is similar.



• Add a loss function for NSD to achieve
distance-aware training (Shen et al., 2018).

2 Neural Syntactic Distance (NSD)

The NSD was firstly proposed by Shen et al.
(2018). This is the first method of linearizing a
constituent tree with a sequence of length n, with-
out loss of information, where n is the number of
words in the sentence.

Formally, given the sentence w =
(w1, . . . , wn), for any pairs of contiguous
words (wi, wi+1), we can define an NSD d(wi),2

where i ∈ [1, n − 1]. In Shen et al. (2018),
the NSD dS(wi) is defined as the height of the
lowest common ancestor (LCA) of the words.3

Subsequently, in Gómez-Rodrı́guez and Vilares
(2018), the NSD dG(wi) was defined as the
number of the common ancestors of the words.
To make the definition complete, we define d(wn)
as follows:4

dS(wn) = H, dG(wn) = 0, (1)

where H is the height of the constituent tree. It is
easy to prove that

dS(wi) + dG(wi) = H, i ∈ [1, n]. (2)

We call dS and dG the absolute NSD.
Furthermore, Gómez-Rodrı́guez and Vilares

(2018) define the relative NSD as follows:

dR(wi) =

{
dG(w1), i = 1,

dG(wi)− dG(wi−1), i ∈ [2, n].
(3)

Figure 1 illustrates these NSDs. It is easy
to see the one-to-one correspondence relationship
between the constituent tree and the (absolute or
relative) NSDs.

The effectiveness of all different NSDs has been
proven on constituent parsing. However, there has
been no attempt to use NSD in machine transla-
tion.

2Note that NSD is defined between two contiguous words.
For convenience of notation, we use d(wi) rather than
d(wi, wi+1) to denote an NSD.

3In Shen et al. (2018), NSD is defined as a real number
that is a function of LCA. However, in practice, NSD is sim-
ply identical to the depth of the LCA.

4dS(wn) and dG(wn) are undefined in both of the origi-
nal papers. We give the definitions here to enable the use of
NSD in NMT later.
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Figure 1: Example of different NSDs. This example is
from Shen et al. (2018).

She enjoys playing tennis .#
-1 2 1 1 3dD

Figure 2: Example of dependency NSDs. “#” is the
root. Dependency labels are omitted.

3 Strategies to improve NMT with NSD

3.1 Dependency NSD

There are many previous studies on using depen-
dency trees to improve NMT (Nguyen Le et al.,
2017; Wu et al., 2017). Therefore, we extend NSD
to dependency trees. Formally, the dependency
NSD between two nodes is defined as follows:

dD(wi) = i− h(i), (4)

where h(i) is the index of the head of wi, and we
let the index of root be 0. Note that dD(wi) can be
either positive or negative, representing the direc-
tional information. Figure 2 gives an example.

3.2 NSDs as Input Sequences

It is easy to see that for w = (w1, . . . , wn), the
lengths of dS , dG, dR and dD are all n. Denoting
the NSD sequence as d = (d1, . . . , dn), we can
see that di ∈ Z, i ∈ [1, n], so we can obtain a
sequence of embedding vectors ed = (ed1, . . . , e

d
n)

as follows:

edi = Ed[d
d
i + (max(d)−min(d) + 1)]. (5)

We callEd the distance embedding matrix and call
ed the syntactic embedding sequence. Note that d
can be the NSD on either the source side or the tar-
get side, so there are two possible Ed, which are



denoted as Es
d and Et

d, respectively. The embed-
dings are calculated as follows:

xsi = femb(E
s
w[w

s
i ], e

ds
i ), (6)

xti = femb(E
t
w[w

t
i ], e

dt
i ), (7)

where edsi and edti are defined in Eq. 5 on the
source side and target side, respectively, and Es

w

and Et
w are the word embedding matrices on both

sides, respectively. Inspired by Sennrich and Had-
dow (2016), function femb is used to combine two
vectors. This function has many different options,
such as:

f
‖
emb(x, e) = x‖e, (8)

f+emb(x, e) = x+ e, (9)

fWb
emb(x, e) =Wf · (x‖e) + bf , (10)

where x, e, bf ∈ Rd and Wf ∈ Rd×2d. The opera-
tor “‖” is the concatenation of two vectors.

When NSD is used as the input sequence on the
target side, there is one problem: edt is unknown
during testing. For this case, we use NSDs for
both the input and output sequences, let the de-
coder predict NSD on-the-fly using the strategy
introduced in Section 3.3, and use the predicted
NSD to calculate edt.

3.3 NSDs as Output Sequences
An NSD can be used to form the output sequence
to improve NMT using the idea of multi-task
learning. Specifically, we train the model to pre-
dict the NSD sequence. When NSD is used as the
output sequence of the encoder, we minimize the
distance (e.g., cross entropy Lentdist, see Section 3.5
for details) between the predicted and the golden
NSD sequences. When NSD is used as the output
sequence of the decoder, besides minimizing the
distance, we use the predicted NSD as the input of
the next time step.

Denote the hidden vector as h = (h1, . . . , hn).
For the encoder, hi = hsi and n = ns, while for
the decoder, hi = hti and n is the current time
step of decoding. Then, we can obtain a sequence
of predicted syntactic distance d̂ = (d̂1, . . . , d̂n),
which is calculated as follows:

p(d̂i | hi) = softmax(Wd · hi + bd), (11)

where Wd and bd are parameters to be learned. By
minimizing the distance between d̂i and di, NSD
can be used to enhance NMT.

3.4 NSD as Positional Encoding (PE)
PE is used by the Transformer (Vaswani et al.,
2017) to encode the positions of words. Formally,
it is defined as follows:

x′i = xi + PE(i), (12)

PE(i)2k = sin(i/100002k/d), (13)

PE(i)2k+1 = cos(i/100002k/d), (14)

where xi can be either xsi or xti, and d is the di-
mension of the embedding vector. Similarly, we
define syntactic PE as follows:

PE(i)2k = sin
( i+max(d)−min(d)

λSPE
2k/d

· 2π
)
,

(15)

PE(i)2k+1 = cos
( i+max(d)−min(d)

λSPE
2k/d

· 2π
)
,

(16)

where λSPE is a hyperparameter to be tuned. In
this way, the periods of these two functions vary
from 1 to λSPE . We define syntactic PE in this
way because (1) according to a quantitative anal-
ysis of the experimental datasets, we found that
the ranges of possible values are quite different be-
tween NSD and word positions, so we tuned λSPE

instead of fixed it to 10000 as in Eqs. 13 and 14,
and (2) di may be negative, so we adjust it to be
positive.

3.5 Distance-aware Training
Instead of using conventional cross-entropy loss
function during training, we use the following loss
function to make the NMT model learn NSD bet-
ter:

L = LNMT + Ldist + Lentdist. (17)

The first item is the cross-entropy loss of the NMT
model, which is

LNMT = −
∑

〈ws,wt〉∈D

log p(wt | ws), (18)

whereD is the training dataset. The second item is
the distance-aware loss, which is inspired by Shen
et al. (2018) and is as follows:

Ldist =
∑

〈ws,wt〉∈D

(Lsdist(ws) + Ltdist(wt)),

Lsdist(ws) =

ns∑
i=1

(di − d̂i)2+∑
i,j>i

[1− sign(di − dj)(d̂i − d̂j)]+,

(19)



and Ltdist can be defined similarly. The third item
is the cross-entropy loss for NSD, which is as fol-
lows:

Lentdist =
∑

〈ws,wt〉∈D

(Lent(s)dist (ws) + Lent(t)dist (wt)),

Lent(s)dist (ws) = −
∑
di∈ds

p(di | hi) log p(d̂i | hi),

(20)
and Lent(t)dist can be defined similarly.

4 Experiments

4.1 Configuration
We experimented on two corpora: (1) ASPEC
(Nakazawa et al., 2016), using the top 100K sen-
tence pairs for training En–Ja models and top 1M
sentence pairs for training Ja–En models, and (2)
LDC,5 which contains about 1.2M sentence pairs,
for training En–Ch and Ch–En models. To tack-
ling the problem of memory consumption, sen-
tences longer than 150 were filtered out, so that
models can be trained successfully. Chinese sen-
tences were segmented by the Stanford segmen-
tation tool.6 For Japanese sentences, we fol-
lowed the preprocessing steps recommended in
WAT 2017.7

The test set is a concatenation of NIST MT
2003, 2004, and 2005. Constituent trees are gen-
erated by the parser of Kitaev and Klein (2018)8,
and dependency trees are generated by the parser
of Dyer et al. (2015)9. Note that although we only
used syntactic information of English in our ex-
periments, our method is also applicable to other
languages.

We implemented our method on OpenNMT10

(Klein et al., 2017), and used the Transformer as
our baseline. As far as we know, there are no pre-
vious studies on using syntactic informations in
the Transformer.

The vocabulary sizes for all languages are
50, 000. Both the encoder and decoder have 6 lay-
ers. The dimensions of hidden vectors and word
embeddings are 512. The multi-head attention has

5LDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08, and LDC2005T06.

6https://nlp.stanford.edu/software/
stanford-segmenter-2017-06-09.zip

7http://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2017/baseline/dataPreparationJE.html

8https://github.com/nikitakit/
self-attentive-parser

9https://github.com/clab/lstm-parser
10http://opennmt.net

8 heads, and the dropout probability is 0.1 (Srivas-
tava et al., 2014). The number of training epochs
was fixed to 50, and we used the model which per-
forms the best on the development set for testing.

As for optimization, we used the Adam op-
timizer (Kingma and Ba, 2014), with β1 =
0.9, β2 = 0.998, and ε = 10−9. Warmup
and decay strategy for learning rate of Vaswani
et al. (2017) are also used, with 8, 000 warmup
steps. We also used the label smoothing strategy
(Szegedy et al., 2016) with εls = 0.1.

4.2 Experimental Results

Table 1 compares the effects of the strategies. We
evaluate the proposed strategies using character-
level BLEU (Papineni et al., 2002) for Chinese and
Japanese, and case-insensitive BLEU for English.

Comparison of different NSDs. The first five
rows of Table 1 compare the results of using dif-
ferent NSDs. When NSD was used at the source
side (En–Ja/En–Ch), all kinds of NSDs improved
translation performance. This indicates that NSD
can be regarded as a useful linguistic feature to im-
prove NMT. In contrast, when NSD was used at
the target side (Ja–En/Ch–En), dS and dG hurt the
performance. This is because the values of dS and
dG are volatile. A tiny change of syntactic struc-
ture often causes a big change of dS and dG. Since
the model has to predict the NSD during decoding,
once there is one error, the subsequent predictions
will be heavily influenced. The use of dR and dD
remedies this problem. Furthermore, the effects of
dS and dG are similar, because they are equivalent
in nature (refer to Eq. 2).

NSD as PE. Rows 5 to 8 of Table 1 evaluate
the use of dependency NSD (dD) as syntactic PE.
Note that for all the experiments, we used not only
the syntactic PE but the conventional PE. Experi-
ment results show that this strategy is indeed use-
ful. When the dominators of Eqs. 15 and 16,
λSPE , were set to 104, there was no improvement.
When they were set to 40, the improvement was
remarkable. This indicates that our design of syn-
tactic PE is reasonable.

NSD as input/output and source/target se-
quences. Rows 8 to 12 of Table 1 are the results
of using dependency NSD (i.e., dD) as the input
and/or output sequences on both sides. First, for
the choice of femb, we can see that f‖emb and f+emb

are similar, while fWb
emb yields better performance.

This is because the model has to learn Wf and

https://nlp.stanford.edu/software/stanford-segmenter-2017-06-09.zip
https://nlp.stanford.edu/software/stanford-segmenter-2017-06-09.zip
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/baseline/dataPreparationJE.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/baseline/dataPreparationJE.html
https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser
https://github.com/clab/lstm-parser
http://opennmt.net


Type I/O SPE Loss En–Ja Ja–En En–Ch Ch–En
1 N/A N/A No Eq. 18 34.59 26.43 29.41 31.60
2 dS I(fWb

emb) No Eq. 18,19,20 35.54 24.57 29.66 28.77
3 dG I(fWb

emb) No Eq. 18,19,20 35.38 24.71 29.60 28.82
4 dR I(fWb

emb) No Eq. 18,19,20 35.83 26.88 29.87 31.82
5 dD I(fWb

emb) No Eq. 18,19,20 36.17 27.21 30.11 32.08
6 dD I(fWb

emb) 104 Eq. 18,19,20 36.06 27.18 30.02 32.03
7 dD I(fWb

emb) 102 Eq. 18,19,20 36.22 27.47 30.23 32.19
8 dD I(fWb

emb) 40 Eq. 18,19,20 36.44 27.59 30.59 32.36
9 dD I(f‖emb) 40 Eq. 18,19,20 36.17 27.21 30.15 32.11

10 dD I(f+
emb) 40 Eq. 18,19,20 36.08 27.32 30.21 32.29

11 dD O 40 Eq. 18,19,20 36.31 27.42 30.42 32.32
12 dD I(fWb

emb)&O 40 Eq. 18,19,20 36.69 27.71 30.56 32.55
13 dD O 40 Eq. 18 21.08 10.22 18.63 15.61
14 dD O 40 Eq. 18,20 33.70 23.31 27.43 30.02
15 dD O 40 Eq. 18,19 34.18 25.19 29.14 31.74

Table 1: Comparison of strategies. I/O: use NSDs as the input or output sequences. Functions f‖emb, f
+
emb, and

fWb
emb are defined in Eqs. 8 to 10, respectively. SPE: use NSD as syntactic PE. Numbers are the values of λSPE in

Eqs. 15 and 16. Loss: items used in the final loss function. Note that when NSD is used as the input sequence of
the source language, Ldist + Lent

dist ≡ 0, because the parsing tree is fixed.

bf , which increases the model capacity. Second,
performance improved for using NSDs both as
input and output sequences, and combining both
obtained further improvement. Third, NSDs im-
proved the performance both on the source and the
target sides. All these results indicate the robust-
ness of NSDs.

Effects of distance-aware training. The last
three rows compare the different effects of the
items in the loss function. When only LNMT are
used, the performance is extremely poor. This
is within expectations, because with only LNMT ,
weights related to NSDs are kept to the initial val-
ues and were not updated, and hence detrimental
to learning. Adding Lentdist improves the results sig-
nificantly, but the improvement is lower than that
of Ldist. This is because training with Lentdist treats
different values of NSDs equally, while Ldist pe-
nalizes larger differences between the predicted
NSD and the golden NSD more severely.

5 Conclusion

We proposed five strategies to improve NMT with
NSD. We found relative NSDs and dependency
NSDs are able to improve the performance consis-
tently, while absolute NSDs hurt the performance
for some cases. The improvement obtained by us-
ing NSDs is general in that NSDs can be used at
both the source side and target side, both as in-
put sequences and output sequences. Using NSDs
as syntactic PE is also useful, and training with a
distance-aware loss function is quite important.
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