@inproceedings{moryossef-etal-2019-step,
title = "{S}tep-by-Step: {S}eparating Planning from Realization in Neural Data-to-Text Generation",
author = "Moryossef, Amit and
Goldberg, Yoav and
Dagan, Ido",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1236",
doi = "10.18653/v1/N19-1236",
pages = "2267--2277",
abstract = "Data-to-text generation can be conceptually divided into two parts: ordering and structuring the information (planning), and generating fluent language describing the information (realization). Modern neural generation systems conflate these two steps into a single end-to-end differentiable system. We propose to split the generation process into a symbolic text-planning stage that is faithful to the input, followed by a neural generation stage that focuses only on realization. For training a plan-to-text generator, we present a method for matching reference texts to their corresponding text plans. For inference time, we describe a method for selecting high-quality text plans for new inputs. We implement and evaluate our approach on the WebNLG benchmark. Our results demonstrate that decoupling text planning from neural realization indeed improves the system{'}s reliability and adequacy while maintaining fluent output. We observe improvements both in BLEU scores and in manual evaluations. Another benefit of our approach is the ability to output diverse realizations of the same input, paving the way to explicit control over the generated text structure.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moryossef-etal-2019-step">
<titleInfo>
<title>Step-by-Step: Separating Planning from Realization in Neural Data-to-Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amit</namePart>
<namePart type="family">Moryossef</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Dagan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Data-to-text generation can be conceptually divided into two parts: ordering and structuring the information (planning), and generating fluent language describing the information (realization). Modern neural generation systems conflate these two steps into a single end-to-end differentiable system. We propose to split the generation process into a symbolic text-planning stage that is faithful to the input, followed by a neural generation stage that focuses only on realization. For training a plan-to-text generator, we present a method for matching reference texts to their corresponding text plans. For inference time, we describe a method for selecting high-quality text plans for new inputs. We implement and evaluate our approach on the WebNLG benchmark. Our results demonstrate that decoupling text planning from neural realization indeed improves the system’s reliability and adequacy while maintaining fluent output. We observe improvements both in BLEU scores and in manual evaluations. Another benefit of our approach is the ability to output diverse realizations of the same input, paving the way to explicit control over the generated text structure.</abstract>
<identifier type="citekey">moryossef-etal-2019-step</identifier>
<identifier type="doi">10.18653/v1/N19-1236</identifier>
<location>
<url>https://aclanthology.org/N19-1236</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>2267</start>
<end>2277</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Step-by-Step: Separating Planning from Realization in Neural Data-to-Text Generation
%A Moryossef, Amit
%A Goldberg, Yoav
%A Dagan, Ido
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F moryossef-etal-2019-step
%X Data-to-text generation can be conceptually divided into two parts: ordering and structuring the information (planning), and generating fluent language describing the information (realization). Modern neural generation systems conflate these two steps into a single end-to-end differentiable system. We propose to split the generation process into a symbolic text-planning stage that is faithful to the input, followed by a neural generation stage that focuses only on realization. For training a plan-to-text generator, we present a method for matching reference texts to their corresponding text plans. For inference time, we describe a method for selecting high-quality text plans for new inputs. We implement and evaluate our approach on the WebNLG benchmark. Our results demonstrate that decoupling text planning from neural realization indeed improves the system’s reliability and adequacy while maintaining fluent output. We observe improvements both in BLEU scores and in manual evaluations. Another benefit of our approach is the ability to output diverse realizations of the same input, paving the way to explicit control over the generated text structure.
%R 10.18653/v1/N19-1236
%U https://aclanthology.org/N19-1236
%U https://doi.org/10.18653/v1/N19-1236
%P 2267-2277
Markdown (Informal)
[Step-by-Step: Separating Planning from Realization in Neural Data-to-Text Generation](https://aclanthology.org/N19-1236) (Moryossef et al., NAACL 2019)
ACL