@inproceedings{koncel-kedziorski-etal-2019-text,
title = "{T}ext {G}eneration from {K}nowledge {G}raphs with {G}raph {T}ransformers",
author = "Koncel-Kedziorski, Rik and
Bekal, Dhanush and
Luan, Yi and
Lapata, Mirella and
Hajishirzi, Hannaneh",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1238/",
doi = "10.18653/v1/N19-1238",
pages = "2284--2293",
abstract = "Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="koncel-kedziorski-etal-2019-text">
<titleInfo>
<title>Text Generation from Knowledge Graphs with Graph Transformers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rik</namePart>
<namePart type="family">Koncel-Kedziorski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dhanush</namePart>
<namePart type="family">Bekal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Luan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hannaneh</namePart>
<namePart type="family">Hajishirzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.</abstract>
<identifier type="citekey">koncel-kedziorski-etal-2019-text</identifier>
<identifier type="doi">10.18653/v1/N19-1238</identifier>
<location>
<url>https://aclanthology.org/N19-1238/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>2284</start>
<end>2293</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Text Generation from Knowledge Graphs with Graph Transformers
%A Koncel-Kedziorski, Rik
%A Bekal, Dhanush
%A Luan, Yi
%A Lapata, Mirella
%A Hajishirzi, Hannaneh
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F koncel-kedziorski-etal-2019-text
%X Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.
%R 10.18653/v1/N19-1238
%U https://aclanthology.org/N19-1238/
%U https://doi.org/10.18653/v1/N19-1238
%P 2284-2293
Markdown (Informal)
[Text Generation from Knowledge Graphs with Graph Transformers](https://aclanthology.org/N19-1238/) (Koncel-Kedziorski et al., NAACL 2019)
ACL
- Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text Generation from Knowledge Graphs with Graph Transformers. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2284–2293, Minneapolis, Minnesota. Association for Computational Linguistics.