@inproceedings{xu-etal-2019-multi,
    title = "Multi-task Learning with Sample Re-weighting for Machine Reading Comprehension",
    author = "Xu, Yichong  and
      Liu, Xiaodong  and
      Shen, Yelong  and
      Liu, Jingjing  and
      Gao, Jianfeng",
    editor = "Burstein, Jill  and
      Doran, Christy  and
      Solorio, Thamar",
    booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/N19-1271/",
    doi = "10.18653/v1/N19-1271",
    pages = "2644--2655",
    abstract = "We propose a multi-task learning framework to learn a joint Machine Reading Comprehension (MRC) model that can be applied to a wide range of MRC tasks in different domains. Inspired by recent ideas of data selection in machine translation, we develop a novel sample re-weighting scheme to assign sample-specific weights to the loss. Empirical study shows that our approach can be applied to many existing MRC models. Combined with contextual representations from pre-trained language models (such as ELMo), we achieve new state-of-the-art results on a set of MRC benchmark datasets. We release our code at \url{https://github.com/xycforgithub/MultiTask-MRC}."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2019-multi">
    <titleInfo>
        <title>Multi-task Learning with Sample Re-weighting for Machine Reading Comprehension</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Yichong</namePart>
        <namePart type="family">Xu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xiaodong</namePart>
        <namePart type="family">Liu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yelong</namePart>
        <namePart type="family">Shen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jingjing</namePart>
        <namePart type="family">Liu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jianfeng</namePart>
        <namePart type="family">Gao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Jill</namePart>
            <namePart type="family">Burstein</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Christy</namePart>
            <namePart type="family">Doran</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Thamar</namePart>
            <namePart type="family">Solorio</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Minneapolis, Minnesota</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We propose a multi-task learning framework to learn a joint Machine Reading Comprehension (MRC) model that can be applied to a wide range of MRC tasks in different domains. Inspired by recent ideas of data selection in machine translation, we develop a novel sample re-weighting scheme to assign sample-specific weights to the loss. Empirical study shows that our approach can be applied to many existing MRC models. Combined with contextual representations from pre-trained language models (such as ELMo), we achieve new state-of-the-art results on a set of MRC benchmark datasets. We release our code at https://github.com/xycforgithub/MultiTask-MRC.</abstract>
    <identifier type="citekey">xu-etal-2019-multi</identifier>
    <identifier type="doi">10.18653/v1/N19-1271</identifier>
    <location>
        <url>https://aclanthology.org/N19-1271/</url>
    </location>
    <part>
        <date>2019-06</date>
        <extent unit="page">
            <start>2644</start>
            <end>2655</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-task Learning with Sample Re-weighting for Machine Reading Comprehension
%A Xu, Yichong
%A Liu, Xiaodong
%A Shen, Yelong
%A Liu, Jingjing
%A Gao, Jianfeng
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F xu-etal-2019-multi
%X We propose a multi-task learning framework to learn a joint Machine Reading Comprehension (MRC) model that can be applied to a wide range of MRC tasks in different domains. Inspired by recent ideas of data selection in machine translation, we develop a novel sample re-weighting scheme to assign sample-specific weights to the loss. Empirical study shows that our approach can be applied to many existing MRC models. Combined with contextual representations from pre-trained language models (such as ELMo), we achieve new state-of-the-art results on a set of MRC benchmark datasets. We release our code at https://github.com/xycforgithub/MultiTask-MRC.
%R 10.18653/v1/N19-1271
%U https://aclanthology.org/N19-1271/
%U https://doi.org/10.18653/v1/N19-1271
%P 2644-2655
Markdown (Informal)
[Multi-task Learning with Sample Re-weighting for Machine Reading Comprehension](https://aclanthology.org/N19-1271/) (Xu et al., NAACL 2019)
ACL
- Yichong Xu, Xiaodong Liu, Yelong Shen, Jingjing Liu, and Jianfeng Gao. 2019. Multi-task Learning with Sample Re-weighting for Machine Reading Comprehension. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2644–2655, Minneapolis, Minnesota. Association for Computational Linguistics.