@inproceedings{chen-etal-2019-integrated,
title = "An Integrated Approach for Keyphrase Generation via Exploring the Power of Retrieval and Extraction",
author = "Chen, Wang and
Chan, Hou Pong and
Li, Piji and
Bing, Lidong and
King, Irwin",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1292",
doi = "10.18653/v1/N19-1292",
pages = "2846--2856",
abstract = "In this paper, we present a novel integrated approach for keyphrase generation (KG). Unlike previous works which are purely extractive or generative, we first propose a new multi-task learning framework that jointly learns an extractive model and a generative model. Besides extracting keyphrases, the output of the extractive model is also employed to rectify the copy probability distribution of the generative model, such that the generative model can better identify important contents from the given document. Moreover, we retrieve similar documents with the given document from training data and use their associated keyphrases as external knowledge for the generative model to produce more accurate keyphrases. For further exploiting the power of extraction and retrieval, we propose a neural-based merging module to combine and re-rank the predicted keyphrases from the enhanced generative model, the extractive model, and the retrieved keyphrases. Experiments on the five KG benchmarks demonstrate that our integrated approach outperforms the state-of-the-art methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2019-integrated">
<titleInfo>
<title>An Integrated Approach for Keyphrase Generation via Exploring the Power of Retrieval and Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hou</namePart>
<namePart type="given">Pong</namePart>
<namePart type="family">Chan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piji</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lidong</namePart>
<namePart type="family">Bing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Irwin</namePart>
<namePart type="family">King</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present a novel integrated approach for keyphrase generation (KG). Unlike previous works which are purely extractive or generative, we first propose a new multi-task learning framework that jointly learns an extractive model and a generative model. Besides extracting keyphrases, the output of the extractive model is also employed to rectify the copy probability distribution of the generative model, such that the generative model can better identify important contents from the given document. Moreover, we retrieve similar documents with the given document from training data and use their associated keyphrases as external knowledge for the generative model to produce more accurate keyphrases. For further exploiting the power of extraction and retrieval, we propose a neural-based merging module to combine and re-rank the predicted keyphrases from the enhanced generative model, the extractive model, and the retrieved keyphrases. Experiments on the five KG benchmarks demonstrate that our integrated approach outperforms the state-of-the-art methods.</abstract>
<identifier type="citekey">chen-etal-2019-integrated</identifier>
<identifier type="doi">10.18653/v1/N19-1292</identifier>
<location>
<url>https://aclanthology.org/N19-1292</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>2846</start>
<end>2856</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Integrated Approach for Keyphrase Generation via Exploring the Power of Retrieval and Extraction
%A Chen, Wang
%A Chan, Hou Pong
%A Li, Piji
%A Bing, Lidong
%A King, Irwin
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F chen-etal-2019-integrated
%X In this paper, we present a novel integrated approach for keyphrase generation (KG). Unlike previous works which are purely extractive or generative, we first propose a new multi-task learning framework that jointly learns an extractive model and a generative model. Besides extracting keyphrases, the output of the extractive model is also employed to rectify the copy probability distribution of the generative model, such that the generative model can better identify important contents from the given document. Moreover, we retrieve similar documents with the given document from training data and use their associated keyphrases as external knowledge for the generative model to produce more accurate keyphrases. For further exploiting the power of extraction and retrieval, we propose a neural-based merging module to combine and re-rank the predicted keyphrases from the enhanced generative model, the extractive model, and the retrieved keyphrases. Experiments on the five KG benchmarks demonstrate that our integrated approach outperforms the state-of-the-art methods.
%R 10.18653/v1/N19-1292
%U https://aclanthology.org/N19-1292
%U https://doi.org/10.18653/v1/N19-1292
%P 2846-2856
Markdown (Informal)
[An Integrated Approach for Keyphrase Generation via Exploring the Power of Retrieval and Extraction](https://aclanthology.org/N19-1292) (Chen et al., NAACL 2019)
ACL