@inproceedings{xu-etal-2019-enhancing,
title = "Enhancing Key-Value Memory Neural Networks for Knowledge Based Question Answering",
author = "Xu, Kun and
Lai, Yuxuan and
Feng, Yansong and
Wang, Zhiguo",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1301/",
doi = "10.18653/v1/N19-1301",
pages = "2937--2947",
abstract = "Traditional Key-value Memory Neural Networks (KV-MemNNs) are proved to be effective to support shallow reasoning over a collection of documents in domain specific Question Answering or Reading Comprehension tasks. However, extending KV-MemNNs to Knowledge Based Question Answering (KB-QA) is not trivia, which should properly decompose a complex question into a sequence of queries against the memory, and update the query representations to support multi-hop reasoning over the memory. In this paper, we propose a novel mechanism to enable conventional KV-MemNNs models to perform interpretable reasoning for complex questions. To achieve this, we design a new query updating strategy to mask previously-addressed memory information from the query representations, and introduce a novel STOP strategy to avoid invalid or repeated memory reading without strong annotation signals. This also enables KV-MemNNs to produce structured queries and work in a semantic parsing fashion. Experimental results on benchmark datasets show that our solution, trained with question-answer pairs only, can provide conventional KV-MemNNs models with better reasoning abilities on complex questions, and achieve state-of-art performances."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2019-enhancing">
<titleInfo>
<title>Enhancing Key-Value Memory Neural Networks for Knowledge Based Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kun</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuxuan</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yansong</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiguo</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Traditional Key-value Memory Neural Networks (KV-MemNNs) are proved to be effective to support shallow reasoning over a collection of documents in domain specific Question Answering or Reading Comprehension tasks. However, extending KV-MemNNs to Knowledge Based Question Answering (KB-QA) is not trivia, which should properly decompose a complex question into a sequence of queries against the memory, and update the query representations to support multi-hop reasoning over the memory. In this paper, we propose a novel mechanism to enable conventional KV-MemNNs models to perform interpretable reasoning for complex questions. To achieve this, we design a new query updating strategy to mask previously-addressed memory information from the query representations, and introduce a novel STOP strategy to avoid invalid or repeated memory reading without strong annotation signals. This also enables KV-MemNNs to produce structured queries and work in a semantic parsing fashion. Experimental results on benchmark datasets show that our solution, trained with question-answer pairs only, can provide conventional KV-MemNNs models with better reasoning abilities on complex questions, and achieve state-of-art performances.</abstract>
<identifier type="citekey">xu-etal-2019-enhancing</identifier>
<identifier type="doi">10.18653/v1/N19-1301</identifier>
<location>
<url>https://aclanthology.org/N19-1301/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>2937</start>
<end>2947</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Key-Value Memory Neural Networks for Knowledge Based Question Answering
%A Xu, Kun
%A Lai, Yuxuan
%A Feng, Yansong
%A Wang, Zhiguo
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F xu-etal-2019-enhancing
%X Traditional Key-value Memory Neural Networks (KV-MemNNs) are proved to be effective to support shallow reasoning over a collection of documents in domain specific Question Answering or Reading Comprehension tasks. However, extending KV-MemNNs to Knowledge Based Question Answering (KB-QA) is not trivia, which should properly decompose a complex question into a sequence of queries against the memory, and update the query representations to support multi-hop reasoning over the memory. In this paper, we propose a novel mechanism to enable conventional KV-MemNNs models to perform interpretable reasoning for complex questions. To achieve this, we design a new query updating strategy to mask previously-addressed memory information from the query representations, and introduce a novel STOP strategy to avoid invalid or repeated memory reading without strong annotation signals. This also enables KV-MemNNs to produce structured queries and work in a semantic parsing fashion. Experimental results on benchmark datasets show that our solution, trained with question-answer pairs only, can provide conventional KV-MemNNs models with better reasoning abilities on complex questions, and achieve state-of-art performances.
%R 10.18653/v1/N19-1301
%U https://aclanthology.org/N19-1301/
%U https://doi.org/10.18653/v1/N19-1301
%P 2937-2947
Markdown (Informal)
[Enhancing Key-Value Memory Neural Networks for Knowledge Based Question Answering](https://aclanthology.org/N19-1301/) (Xu et al., NAACL 2019)
ACL