@inproceedings{teranishi-etal-2019-decomposed,
title = "Decomposed Local Models for Coordinate Structure Parsing",
author = "Teranishi, Hiroki and
Shindo, Hiroyuki and
Matsumoto, Yuji",
editor = "Burstein, Jill and
Doran, Christy and
Solorio, Thamar",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-1343",
doi = "10.18653/v1/N19-1343",
pages = "3394--3403",
abstract = "We propose a simple and accurate model for coordination boundary identification. Our model decomposes the task into three sub-tasks during training; finding a coordinator, identifying inside boundaries of a pair of conjuncts, and selecting outside boundaries of it. For inference, we make use of probabilities of coordinators and conjuncts in the CKY parsing to find the optimal combination of coordinate structures. Experimental results demonstrate that our model achieves state-of-the-art results, ensuring that the global structure of coordinations is consistent.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="teranishi-etal-2019-decomposed">
<titleInfo>
<title>Decomposed Local Models for Coordinate Structure Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hiroki</namePart>
<namePart type="family">Teranishi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroyuki</namePart>
<namePart type="family">Shindo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuji</namePart>
<namePart type="family">Matsumoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christy</namePart>
<namePart type="family">Doran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a simple and accurate model for coordination boundary identification. Our model decomposes the task into three sub-tasks during training; finding a coordinator, identifying inside boundaries of a pair of conjuncts, and selecting outside boundaries of it. For inference, we make use of probabilities of coordinators and conjuncts in the CKY parsing to find the optimal combination of coordinate structures. Experimental results demonstrate that our model achieves state-of-the-art results, ensuring that the global structure of coordinations is consistent.</abstract>
<identifier type="citekey">teranishi-etal-2019-decomposed</identifier>
<identifier type="doi">10.18653/v1/N19-1343</identifier>
<location>
<url>https://aclanthology.org/N19-1343</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>3394</start>
<end>3403</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Decomposed Local Models for Coordinate Structure Parsing
%A Teranishi, Hiroki
%A Shindo, Hiroyuki
%A Matsumoto, Yuji
%Y Burstein, Jill
%Y Doran, Christy
%Y Solorio, Thamar
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F teranishi-etal-2019-decomposed
%X We propose a simple and accurate model for coordination boundary identification. Our model decomposes the task into three sub-tasks during training; finding a coordinator, identifying inside boundaries of a pair of conjuncts, and selecting outside boundaries of it. For inference, we make use of probabilities of coordinators and conjuncts in the CKY parsing to find the optimal combination of coordinate structures. Experimental results demonstrate that our model achieves state-of-the-art results, ensuring that the global structure of coordinations is consistent.
%R 10.18653/v1/N19-1343
%U https://aclanthology.org/N19-1343
%U https://doi.org/10.18653/v1/N19-1343
%P 3394-3403
Markdown (Informal)
[Decomposed Local Models for Coordinate Structure Parsing](https://aclanthology.org/N19-1343) (Teranishi et al., NAACL 2019)
ACL
- Hiroki Teranishi, Hiroyuki Shindo, and Yuji Matsumoto. 2019. Decomposed Local Models for Coordinate Structure Parsing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3394–3403, Minneapolis, Minnesota. Association for Computational Linguistics.