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Abstract

Reasoning about implied relationships (e.g.
paraphrastic, common sense, encyclopedic)
between pairs of words is crucial for many
cross-sentence inference problems. This pa-
per proposes new methods for learning and us-
ing embeddings of word pairs that implicitly
represent background knowledge about such
relationships. Our pairwise embeddings are
computed as a compositional function on word
representations, which is learned by maximiz-
ing the pointwise mutual information (PMI)
with the contexts in which the two words co-
occur. We add these representations to the
cross-sentence attention layer of existing in-
ference models (e.g. BiDAF for QA, ESIM
for NLI), instead of extending or replacing ex-
isting word embeddings. Experiments show a
gain of 2.7% on the recently released SQuAD
2.0 and 1.3% on MultiNLI. Our representa-
tions also aid in better generalization with
gains of around 6-7% on adversarial SQuAD
datasets, and 8.8% on the adversarial entail-
ment test set by Glockner et al. (2018).

1 Introduction

Reasoning about relationships between pairs of
words is crucial for cross sentence inference prob-
lems such as question answering (QA) and natu-
ral language inference (NLI). In NLI, for exam-
ple, given the premise “golf is prohibitively expen-
sive”, inferring that the hypothesis “golf is a cheap
pastime” is a contradiction requires one to know
that expensive and cheap are antonyms. Recent
work (Glockner et al., 2018) has shown that cur-
rent models, which rely heavily on unsupervised
single-word embeddings, struggle to learn such re-
lationships. In this paper, we show that they can
be learned with word pair vectors (pair2vec1),

1https://github.com/mandarjoshi90/
pair2vec

X Y Contexts
with X and Y baths

hot cold too X or too Y
neither X nor Y

in X, Y
Portland Oregon the X metropolitan area in Y

X International Airport in Y

food X are maize, Y, etc
crop wheat dry X, such as Y,

more X circles appeared in Y fields

X OS comes with Y play
Android Google the X team at Y

X is developed by Y

Table 1: Example word pairs and their contexts.

which are trained unsupervised, and which signif-
icantly improve performance when added to exist-
ing cross-sentence attention mechanisms.

Unlike single-word representations, which typ-
ically model the co-occurrence of a target word
x with its context c, our word-pair representa-
tions are learned by modeling the three-way co-
occurrence between words (x, y) and the context
c that ties them together, as seen in Table 1. While
similar training signals have been used to learn
models for ontology construction (Hearst, 1992;
Snow et al., 2005; Turney, 2005; Shwartz et al.,
2016) and knowledge base completion (Riedel
et al., 2013), this paper shows, for the first time,
that large scale learning of pairwise embeddings
can be used to directly improve the performance
of neural cross-sentence inference models.

More specifically, we train a feedforward net-
work R(x, y) that learns representations for the
individual words x and y, as well as how to com-
pose them into a single vector. Training is done
by maximizing a generalized notion of the point-
wise mutual information (PMI) among x, y, and
their context c using a variant of negative sam-
pling (Mikolov et al., 2013a). Making R(x, y) a
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compositional function on individual words alle-
viates the sparsity that necessarily comes with em-
bedding pairs of words, even at a very large scale.

We show that our embeddings can be added to
existing cross-sentence inference models, such as
BiDAF++ (Seo et al., 2017; Clark and Gardner,
2018) for QA and ESIM (Chen et al., 2017) for
NLI. Instead of changing the word embeddings
that are fed into the encoder, we add the pretrained
pair representations to higher layers in the net-
work where cross sentence attention mechanisms
are used. This allows the model to use the back-
ground knowledge that the pair embeddings im-
plicitly encode to reason about the likely relation-
ships between the pairs of words it aligns.

Experiments show that simply adding our word-
pair embeddings to existing high-performing mod-
els, which already use ELMo (Peters et al., 2018),
results in sizable gains. We show 2.72 F1 points
over the BiDAF++ model (Clark and Gardner,
2018) on SQuAD 2.0 (Rajpurkar et al., 2018), as
well as a 1.3 point gain over ESIM (Chen et al.,
2017) on MultiNLI (Williams et al., 2018). Ad-
ditionally, our approach generalizes well to adver-
sarial examples, with a 6-7% F1 increase on adver-
sarial SQuAD (Jia and Liang, 2017) and a 8.8%
gain on the Glockner et al. (2018) NLI bench-
mark. An analysis of pair2vec on word analo-
gies suggests that it complements the information
in single-word representations, especially for en-
cyclopedic and lexicographic relations.

2 Unsupervised Pretraining

Extending the distributional hypothesis to word
pairs, we posit that similar word pairs tend to oc-
cur in similar contexts, and that the contexts pro-
vide strong clues about the likely relationships that
hold between the words (see Table 1). We assume
a dataset of (x, y, c) triplets, where each instance
depicts a word pair (x, y) and the context c in
which they appeared. We learn two compositional
representation functions, R(x, y) and C(c), to en-
code the pair and the context, respectively, as d-
dimensional vectors (Section 2.1). The functions
are trained using a variant of negative sampling,
which tries to embed word pairs (x, y) close to the
contexts c with which they appeared (Section 2.2).

2.1 Representation

Our word-pair and context representations are
both fixed-length vectors, composed from individ-

ual words. The word-pair representation function
R(x, y) first embeds and normalizes the individual
words with a shared lookup matrix Ea:

x =
Ea(x)

‖Ea(x)‖
y =

Ea(y)

‖Ea(y)‖

These vectors, along with their element-wise prod-
uct, are fed into a four-layer perceptron:

R(x, y) =MLP 4(x,y,x ◦ y)

The context c = c1...cn is encoded as a d-
dimensional vector using the function C(c). C(c)
embeds each token ci with a lookup matrix Ec,
contextualizes it with a single-layer Bi-LSTM, and
then aggregates the entire context with attentive
pooling:

ci = Ec(ci)

h1...hn = BiLSTM(c1...cn)

w = softmaxi(khi)

C(c) =
∑
i

wiWhi

where W ∈ Rd×d and k ∈ Rd. All parameters,
including the lookup tablesEa andEc, are trained.

Our representation is similar to two recently-
proposed frameworks by Washio and Kato
(2018a,b), but differs in that: (1) they use depen-
dency paths as context, while we use surface form;
(2) they encode the context as either a lookup table
or the last state of a unidirectional LSTM. We also
use a different objective, which we discuss next.

2.2 Objective
To optimize our representation functions, we con-
sider two variants of negative sampling (Mikolov
et al., 2013a): bivariate and multivariate. The orig-
inal bivariate objective models the two-way dis-
tribution of context and (monolithic) word pair
co-occurrences, while our multivariate extension
models the three-way distribution of word-word-
context co-occurrences. We further augment the
multivariate objective with typed sampling to up-
sample harder negative examples. We discuss the
impact of the bivariate and multivariate objectives
(and other components) in Section 4.3.

Bivariate Negative Sampling Our objective as-
pires to make R(x, y) and C(c) similar (have high
inner products) for (x, y, c) that were observed to-
gether in the data. At the same time, we wish
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Bivariate J2NS (x, y, c) = log σ (R(x, y) · C(c)) +
∑kc

i=1 log σ
(
−R(x, y) · C(cNi )

)
Multivariate J3NS (x, y, c) = J2NS (x, y, c) +

∑kx
i=1 log σ

(
−R(xNi , y) · C(c)

)
+
∑ky

i=1 log σ
(
−R(x, yNi ) · C(c)

)
Table 2: The bivariate and multivariate negative sampling objectives. The superscript N marks randomly sampled
components, with k∗ being the negative sample size per instance. The equations present per-instance objectives.

to keep our pair vectors dis-similar from random
context vectors. In a straightforward application
of the original (bivariate) negative sampling objec-
tive, we could generate a negative example from
each observed (x, y, c) instance by replacing the
original context c with a randomly-sampled con-
text cN (Table 2, J2NS).

Assuming that the negative contexts are sam-
pled from the empirical distribution P (·, ·, c) (with
P (x, y, c) being the portion of (x, y, c) instances
in the dataset), we can follow Levy and Goldberg
(2014) to show that this objective converges into
the pointwise mutual information (PMI) between
the word pair and the context.

R(x, y) · C(c) = log
P (x, y, c)

kcP (x, y, ·)P (·, ·, c)

This objective mainly captures co-occurrences of
monolithic pairs and contexts, and is limited by
the fact that the training data, by construction,
only contains pairs occurring within a sentence.
For better generalization to cross-sentence tasks,
where the pair distribution differs from that of the
training data, we need a multivariate objective that
captures the full three-way (x, y, c) interaction.

Multivariate Negative Sampling We introduce
negative sampling of target words, x and y, in ad-
dition to negative sampling of contexts c (Table 2,
J3NS). Our new objective also converges to a
novel multivariate generalization of PMI, different
from previous PMI extensions that were inspired
by information theory (Van de Cruys, 2011) and
heuristics (Jameel et al., 2018).2 Following Levy
and Goldberg (2014), we can show that when re-
placing target words in addition to contexts, our
objective will converge3 to the optimal value in
Equation 1:

R(x, y) · C(c) = log
P (x, y, c)

Zx,y,c
(1)

2See supplementary material for their exact formulations.
3A full proof is provided in the supplementary material.

where Zx,y,c, the denominator, is:

Zx,y,c = kcP (·, ·, c)P (x, y, ·)
+ kxP (x, ·, ·)P (·, y, c)
+ kyP (·, y, ·)P (x, ·, c) (2)

This optimal value deviates from previous gen-
eralizations of PMI by having a linear mixture
of marginal probability products in its denomina-
tor. By introducing terms such as P (x, ·, c) and
P (·, y, c), the objective penalizes spurious corre-
lations between words and contexts that disregard
the other target word. For example, it would assign
the pattern “X is a Y” a high score with (banana,
fruit), but a lower score with (cat, fruit).

Typed Sampling In multivariate negative sam-
pling, we typically replace x and y by sampling
from their unigram distributions. In addition to
this, we also sample uniformly from the top 100
words according to cosine similarity using distri-
butional word vectors. This is done to encourage
the model to learn relations between specific in-
stances as opposed to more general types. For ex-
ample, using California as a negative sample for
Oregon helps the model to learn that the pattern
“X is located in Y” fits the pair (Portland, Oregon),
but not the pair (Portland, California). Similar ad-
versarial constraints were used in knowledge base
completion (Toutanova et al., 2015) and word em-
beddings (Li et al., 2017).4

3 Integrating pair2vec into Models

We first present a general outline for incorporat-
ing pair2vec into attention-based architectures,
and then discuss changes made to BiDAF++ and
ESIM. The key idea is to inject our pairwise rep-
resentations into the attention layer by reusing the
cross-sentence attention weights. In addition to at-
tentive pooling over single word representations,
we also pool over cross-sentence word pair em-
beddings (Figure 1).

4Applying typed sampling also changes the value to
which our objective will converge, and will replace the un-
igram probabilities in Equation (2) to reflect the type-based
distribution.
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Figure 1: A typical architecture of a cross-sentence inference model (left), and how pair2vec is added to it
(right). Given two sequences, a and b, existing models create b-aware representations of words in a. For any word
ai, this typically involves the BiLSTM representation of word ai (ai), and an attention-weighted sum over b’s
BiLSTM states with ai as the query (bi). To these, we add the word-pair representation of ai and each word in b,
weighted by attention (ri). Thicker attention arrows indicate stronger word pair alignments (e.g. cheap, expensive).

3.1 General Approach
Pair Representation We assume that we are
given two sequences a = a1...an and b = b1...bm.
We represent the word-pair embeddings between a
and b using the pretrained pair2vec model as:

ri,j =

[
R(ai, bj)

‖R(ai, bj)‖
;
R(bj , ai)

‖R(bj , ai)‖

]
(3)

We include embeddings in both directions,
R(ai, bj) and R(bj , ai), because the many rela-
tions can be expressed in both directions; e.g., hy-
pernymy can be expressed via “X is a type of Y”
as well as “Y such as X”. We take the L2 normal-
ization of each direction’s pair embedding because
the heavy-tailed distribution of word pairs results
in significant variance of their norms.

Base Model Let a1...an and b1...bm be the vec-
tor representations of sequences a and b, as pro-
duced by the input encoder (e.g. ELMo em-
beddings contextualized with model-specific BiL-
STMs). Furthermore, we assume that the base
model computes soft word alignments between a
and b via co-attention (4, 5), which are then used
to compute b-aware representations of a:

si,j = fatt(ai,bj) (4)

α = softmaxj(si,j) (5)

bi =

m∑
j=0

αi,jbj (6)

ainfi =
[
ai;bi

]
(7)

The symmetric term binf
j is defined analogously.

We refer to ainf and binf as the inputs to the infer-

ence layer, since this layer computes some func-
tion over aligned word pairs, typically via a feed-
forward network and LSTMs. The inference layer
is followed by aggregation and output layers.

Injecting pair2vec We conjecture that the in-
ference layer effectively learns word-pair relation-
ships from training data, and it should, therefore,
help to augment its input with pair2vec. We
augment ainfi (7) with the pair vectors ri,j (3) by
concatenating a weighted average of the pair vec-
tors ri,j involving ai, where the weights are the
same αi,j computed via attention in (5):

ri =
∑
j

αi,jri,j (8)

ainfi =
[
ai;bi; ri

]
(9)

The symmetric term binf
j is defined analogously.

3.2 Question Answering
We augment the inference layer in the BiDAF++
model with pair2vec. BiDAF++ is an im-
proved version of the BiDAFNoAnswer (Seo
et al., 2017; Levy et al., 2017) which includes self-
attention and ELMo embeddings from Peters et al.
(2018). We found this variant to be stronger than
the baselines presented in Rajpurkar et al. (2018)
by over 2.5 F1. We use BiDAF++ as a baseline
since its architecture is typical for QA systems,
and, until recently, was state-of-the-art on SQuAD
2.0 and other benchmarks.

BiDAF++ Let a and b be the outputs of the pas-
sage and question encoders respectively (in place
of the standard p and q notations). The infer-
ence layer’s inputs ainfi are defined similarly to
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the generic model’s in (7), but also contain an ag-
gregation of the elements in a, with better-aligned
elements receiving larger weights:

µ = softmaxi(max
j
si,j) (10)

âi =
∑
i

µiai (11)

ainfi =
[
ai;bi;ai ◦ bi; â

]
(12)

In the later layers, ainf is recontextualized using
a BiGRU and self attention. Finally a prediction
layer predicts the start and end tokens.

BiDAF++ with pair2vec To add our pair vec-
tors, we simply concatenate ri (3) to ainfi (12):

ainfi =
[
ai;bi;ai ◦ bi; â; ri

]
(13)

3.3 Natural Language Inference
For NLI, we augment the ESIM model (Chen
et al., 2017), which was previously state-of-the-
art on both SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) benchmarks.

ESIM Let a and b be the outputs of the premise
and hypothesis encoders respectively (in place of
the standard p and h notations). The inference
layer’s inputs ainfi (and binf

j ) are defined similarly
to the generic model’s in (7):

ainfi =
[
ai;bi;ai ◦ bi;ai − bi

]
(14)

In the later layers, ainf and binf are projected,
recontextualized, and converted to a fixed-length
vector for each sentence using multiple pooling
schemes. These vectors are then passed on to an
output layer, which predicts the class.

ESIM with pair2vec To add our pair vectors,
we simply concatenate ri (3) to ainfi (14):

ainfi =
[
ai;bi;ai ◦ bi;ai − bi; ri

]
(15)

A similar augmentation of ESIM was recently pro-
posed in KIM (Chen et al., 2018). However, their
pair vectors are composed of WordNet features,
while our pair embeddings are learned directly
from text (see further discussion in Section 6).

4 Experiments

For experiments on QA (Section 4.1) and NLI
(Section 4.2), we use our full model which in-
cludes multivariate and typed negative sampling.
We discuss ablations in Section 4.3

Benchmark BiDAF + pair2vec ∆

SQuAD 2.0 EM 65.66 68.02 +2.36
F1 68.86 71.58 +2.72

AddSent EM 37.50 44.20 +6.70
F1 42.55 49.69 +7.14

AddOneSent EM 48.20 53.30 +5.10
F1 54.02 60.13 +6.11

Table 3: Performance on SQuAD 2.0 and adversarial
SQuAD (AddSent and AddOneSent) benchmarks, with
and without pair2vec. All models have ELMo.

Benchmark ESIM + pair2vec ∆

Matched 79.68 81.03 +1.35
Mismatched 78.80 80.12 +1.32

Table 4: Performance on MultiNLI, with and without
pair2vec. All models have ELMo.

Data We use the January 2018 dump of En-
glish Wikipedia, containing 96M sentences to
train pair2vec. We restrict the vocabulary to
the 100K most frequent words. Preprocessing re-
moves all out-of-vocabulary words in the corpus.
We consider each word pair within a window of
5 in the preprocessed corpus, and subsample5 in-
stances based on pair probability with a threshold
of 5·10−7. We define the context as one word each
to the left and right, and all the words in between
each pair, replacing both target words with place-
holders X and Y (see Table 1). More details can
be found in the supplementary material.

4.1 Question Answering

We experiment on the SQuAD 2.0 QA benchmark
(Rajpurkar et al., 2018), as well as the adversarial
datasets of SQuAD 1.1 (Rajpurkar et al., 2016; Jia
and Liang, 2017). Table 3 shows the performance
of BiDAF++, with ELMo , before and after adding
pair2vec. Experiments on SQuAD 2.0 show
that our pair representations improve performance
by 2.72 F1. Moreover, adding pair2vec also
results in better generalization on the adversarial
SQuAD datasets with gains of 7.14 and 6.11 F1.

4.2 Natural Language Inference

We report the performance of our model on
MultiNLI and the adversarial test set from Glock-
ner et al. (2018) in Table 5. We outperform the

5Like in word2vec, subsampling reduces the size of the
dataset and speeds up training. For this, we define the word
pair probability as the product of unigram probabilities.
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Model Accuracy

Rule-based Models
WordNet Baseline 85.8

Models with GloVe
ESIM (Chen et al., 2017) 77.0
KIM (Chen et al., 2018) 87.7
ESIM + pair2vec 92.9

Models with ELMo
ESIM (Peters et al., 2018) 84.6
ESIM + pair2vec 93.4

Table 5: Performance on the adversarial NLI test set of
Glockner et al. (2018).

Model EM (∆) F1 (∆)

pair2vec (Full Model) 69.20 72.68

Composition: 2 Layers 68.35 (-0.85) 71.65 (-1.03)
Composition: Multiply 67.10 (-2.20) 70.20 (-2.48)
Objective: Bivariate NS 68.63 (-0.57) 71.98 (-0.70)
Unsupervised: Pair Dist 67.07 (-2.13) 70.24 (-2.44)

No pair2vec (BiDAF) 66.66 (-2.54) 69.90 (-2.78)

Table 6: Ablations on the Squad 2.0 development set
show that argument sampling as well as using a deeper
composition function are useful.

ESIM + ELMo baseline by 1.3% on the matched
and mismatched portions of the dataset.

We also record a gain of 8.8% absolute over
ESIM on the Glockner et al. (2018) dataset, setting
a new state of the art. Following standard prac-
tice (Glockner et al., 2018), we train all models on
a combination of SNLI (Bowman et al., 2015) and
MultiNLI. Glockner et al. (2018) show that with
the exception of KIM (Chen et al., 2018), which
uses WordNet features, several NLI models fail to
generalize to this setting which involves lexical in-
ference. For a fair comparison with KIM on the
Glockner test set, we replace ELMo with GLoVE
embeddings, and still outperform KIM by almost
halving the error rate.

4.3 Ablations

Ablating parts of pair2vec shows that all com-
ponents of the model (Section 2) are useful. We
ablate each component and report the EM and F1
on the development set of SQuAD 2.0 (Table 6).
The full model, which uses a 4-layer MLP for
R(x, y) and trains with multivariate negative sam-
pling, achieves the highest F1 of 72.68.

We experiment with two alternative composi-
tion functions, a 2-layer MLP (Composition: 2
Layers) and element-wise multiplication (Compo-
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Figure 2: Accuracy as a function of the interpolation
parameter α (see Eq. (16)). The α=0 configuration
relies only on fastText (Bojanowski et al., 2017), while
α=1 reflects pair2vec.

sition: Multiply), which yield significantly smaller
gains over the baseline BiDAF++ model. This
demonstrates the need for a deep composition
function. Eliminating sampling of target words
(x, y) from the objective (Objective: Bivariate
NS) results in a drop of 0.7 F1, accounting for
about a quarter of the overall gain. This suggests
that while the bulk of the signal is mined from the
pair-context interactions, there is also valuable in-
formation in other interactions as well.

We also test whether specific pre-training of
word pair representations is useful by replacing
pair2vec embeddings with the vector offsets
of pre-trained word embeddings (Unsupervised:
Pair Dist). We follow the PairDistance method for
word analogies (Mikolov et al., 2013b), and repre-
sent the pair (x, y) as the L2 normalized difference
of single-word vectors: (x− y)/‖x− y‖. We use
the same fastText (Bojanowski et al., 2017) word
vectors with which we initialized pair2vec be-
fore training. We observe a gain of only 0.34 F1
over the baseline.

5 Analysis

In Section 4, we showed that pair2vec adds
information complementary to single-word repre-
sentations like ELMo. Here, we ask what this ex-
tra information is, and try to characterize which
word relations are better captured by pair2vec.
To that end, we evaluate performance on a word
analogy dataset with over 40 different relation
types (Section 5.1), and observe how pair2vec
fills hand-crafted relation patterns (Section 5.2).
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Relation 3CosAdd +pair2vec α∗

Country:Capital 1.2 86.1 0.9
Name:Occupation 1.8 44.6 0.8
Name:Nationality 0.1 42.0 0.9
UK City:County 0.7 31.7 1.0
Country:Language 4.0 28.4 0.8
Verb 3pSg:Ved 49.1 61.7 0.6
Verb Ving:Ved 61.1 73.3 0.5
Verb Inf:Ved 58.5 70.1 0.5
Noun+less 4.8 16.0 0.2
Substance Meronym 3.8 14.5 0.6

Table 7: The top 10 analogy relations for which inter-
polating with pair2vec improves performance. α∗

is the optimal interpolation parameter for each relation.

5.1 Quantitative Analysis: Word Analogies

Word Analogy Dataset Given a word pair (a, b)
and word x, the word analogy task involves pre-
dicting a word y such that a : b :: x : y. We
use the Bigger Analogy Test Set (BATS, Glad-
kova et al., 2016) which contains four groups of
relations: encyclopedic semantics (e.g., person-
profession as in Einstein-physicist), lexicographic
semantics (e.g., antonymy as in cheap-expensive),
derivational morphology (e.g., noun forms as in
oblige-obligation), and inflectional morphology
(e.g., noun-plural as in bird-birds). Each group
contains 10 sub-relations.

Method We interpolate pair2vec and
3CosAdd (Mikolov et al., 2013b; Levy et al.,
2014) scores on fastText embeddings, as follows:

score(y) = α · cos(ra,b, rx,y)

+ (1− α) · cos(b− a+ x,y) (16)

where a, b, x, and y represent fastText embed-
dings6 and ra,b, rx,y represent the pair2vec em-
bedding for the word pairs (a, b) and (x, y), re-
spectively; α is the linear interpolation parameter.
Following prior work (Mikolov et al., 2013b), we
return the highest-scoring y in the entire vocabu-
lary, excluding the given words a, b, and x.

Results Figure 2 shows how the accuracy on
each category of relations varies with α. For all
four groups, adding pair2vec to 3CosAdd re-
sults in significant gains. In particular, the biggest
relative improvements are observed for encyclope-
dic (356%) and lexicographic (51%) relations.

6The fastText embeddings in the analysis were retrained
using the same Wikipedia corpus used to train pair2vec to
control for the corpus when comparing the two methods.

Table 7 shows the specific relations in which
pair2vec made the largest absolute impact.
The gains are particularly significant for relations
where fastText embeddings provide limited sig-
nal. For example, the accuracy for substance
meronyms goes from 3.8% to 14.5%. In some
cases, there is also a synergistic effect; for in-
stance, in noun+less, pair2vec alone scored
0% accuracy, but mixing it with 3CosAdd, which
got 4.8% on its own, yielded 16% accuracy.

These results, alongside our experiments in Sec-
tion 4, strongly suggest that pair2vec encodes
information complementary to that in single-word
embedding methods such as fastText and ELMo.

5.2 Qualitative Analysis: Slot Filling

To further explore how pair2vec encodes such
complementary information, we consider a set-
ting similar to that of knowledge base completion:
given a Hearst-like context pattern c and a sin-
gle word x, predict the other word y from the en-
tire vocabulary. We rank candidate words y based
on the scoring function in our training objective:
R(x, y) ·C(c). We use a fixed set of example rela-
tions and manually define their predictive context
patterns and a small set of candidate words x.

Table 8 shows the top three y words. The model
embeds (x, y) pairs close to contexts that reflect
their relationship. For example, substituting Port-
land in the city-state pattern (“in X, Y.”), the top
two words are Oregon and Maine, both US states
with cities named Portland. When used with the
city-city pattern (“from X to Y.”), the top two words
are Salem and Astoria, both cities in Oregon. The
word-context interaction often captures multiple
relations; for example, Monet is used to refer to
the painter (profession) as well as his paintings.

As intended, pair2vec captures the three-
way word-word-context interaction, and not just
the two-way word-context interaction (as in
single-word embeddings). This profound differ-
ence allows pair2vec to complement single-
word embeddings with additional information.

6 Related Work

Pretrained Word Embeddings Many state-of-
the-art models initialize their word representations
using pretrained embeddings such as word2vec
(Mikolov et al., 2013a) or ELMo (Peters et al.,
2018). These representations are typically trained
using an interpretation of the Distributional Hy-
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Relation Context X Y (Top 3)

Antonymy/Exclusion either X or Y accept reject, refuse, recognise
hard soft, brittle, polished

Hypernymy including X and other Y copper ones, metals, mines
google apps, browsers, searches

Hyponymy X like Y cities solaris, speyer, medina
browsers chrome, firefox, netscape

Co-hyponymy , X , Y , copper malachite, flint, ivory
google microsoft, bing, yahoo

City-State in X , Y . portland oregon, maine, dorset
dallas tx, texas, va

City-City from X to Y . portland salem, astoria, ogdensburg
dallas denton, allatoona, addison

Profession X , a famous Y , ronaldo footballer, portuguese, player
monet painter, painting, butterfly

Table 8: Given a context c and a word x, we select the top 3 words y from the entire vocabulary using our scoring
function R(x, y) · C(c). The analysis suggests that the model tends to rank correct matches (italics) over others.

pothesis (Harris, 1954) in which the bivariate dis-
tribution of target words and contexts is modeled.
Our work deviates from the word embedding lit-
erature in two major aspects. First, our goal is to
represent word pairs, not individual words. Sec-
ond, our new PMI formulation models the trivari-
ate word-word-context distribution. Experiments
show that our pair embeddings can complement
single-word embeddings.

Mining Textual Patterns There is extensive lit-
erature on mining textual patterns to predict rela-
tions between words (Hearst, 1992; Snow et al.,
2005; Turney, 2005; Riedel et al., 2013; Van de
Cruys, 2014; Toutanova et al., 2015; Shwartz and
Dagan, 2016). These approaches focus mostly on
relations between pairs of nouns (perhaps with the
exception of VerbOcean (Chklovski and Pantel,
2004)). More recently, they have been expanded
to predict relations between unrestricted pairs of
words (Jameel et al., 2018; Espinosa Anke and
Schockaert, 2018), assuming that each word-pair
was observed together during pretraining. Washio
and Kato (2018a,b) relax this assumption with a
compositional model that can represent any pair,
as long as each word appeared (individually) in the
corpus.

These methods are evaluated on either intrin-
sic relation prediction tasks, such as BLESS (Ba-
roni and Lenci, 2011) and CogALex (Santus
et al., 2016), or knowledge-base population bench-
marks, e.g. FB15 (Bordes et al., 2013). To the
best of our knowledge, our work is the first to in-
tegrate pattern-based methods into modern high-

performing semantic models and evaluate their
impact on complex end-tasks like QA and NLI.

Integrating Knowledge in Complex Models
Ahn et al. (2016) integrate Freebase facts into a
language model using a copying mechanism over
fact attributes. Yang and Mitchell (2017) modify
the LSTM cell to incorporate WordNet and NELL
knowledge for event and entity extraction. For
cross-sentence inference tasks, Weissenborn et al.
(2017), Bauer et al. (2018), and Mihaylov and
Frank (2018) dynamically refine word representa-
tions by reading assertions from ConceptNet and
Wikipedia abstracts. Our approach, on the other
hand, relies on a relatively simple extension of ex-
isting cross-sentence inference models. Further-
more, we do not need to dynamically retrieve and
process knowledge base facts or Wikipedia texts,
and just pretrain our pair vectors in advance.

KIM (Chen et al., 2017) integrates word-pair
vectors into the ESIM model for NLI in a very
similar way to ours. However, KIM’s word-
pair vectors contain only hand-engineered word-
relation indicators from WordNet, whereas our
word-pair vectors are automatically learned from
unlabeled text. Our vectors can therefore reflect
relation types that do not exist in WordNet (such as
profession) as well as word pairs that do not have
a direct link in WordNet (e.g. bronze and statue);
see Table 8 for additional examples.
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7 Conclusion and Future Work

We presented new methods for training and using
word pair embeddings that implicitly represent
background knowledge. Our pair embeddings are
computed as a compositional function of the indi-
vidual word representations, which is learned by
maximizing a variant of the PMI with the contexts
in which the the two words co-occur. Experiments
on cross-sentence inference benchmarks demon-
strated that adding these representations to exist-
ing models results in sizable improvements for
both in-domain and adversarial settings.

Published concurrently with this paper, BERT
(Devlin et al., 2018), which uses a masked lan-
guage model objective, has reported dramatic
gains on multiple semantic benchmarks including
question-answering, natural language inference,
and named entity recognition. Potential avenues
for future work include multitasking BERT with
pair2vec in order to more directly incorporate
reasoning about word pair relations into the BERT
objective.
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A Implementation Details

Hyperparameters For both word pairs and con-
texts, we use 300-dimensional word embeddings
initialized with FastText (Bojanowski et al., 2017).
The context representation uses a single-layer Bi-
LSTM with a hidden layer size of 100. We use 2
negative context samples and 3 negative argument
samples for each pair-context tuple.

For pre-training, we used stochastic gradient de-
scent with an initial learning rate of 0.01. We re-
duce the learning rate by a factor of 0.9 if the loss
does not decrease for 300K steps. We use a batch
size of 600, and train for 12 epochs.7

For both end-task models, we use AllenNLP’s
implementations (Gardner et al., 2018) with de-
fault hyperparameters; we did not change any set-
ting before or after injecting pair2vec. We use
0.15 dropout on our pretrained pair embeddings.

B Multivariate Negative Sampling

B.1 Relation to Multivariate PMI
In this appendix, we elaborate on mathematical
details of multivariate negative sampling to sup-
port our claims in Section 2.2, and also discuss
its relation to other PMI multivariate formulations
(Table 9).

B.2 Global Objective
Equation (Table 2, J3NS) in Section 2.2 charac-
terizes the local objective for each data instance.
To understand the mathematical properties of this
objective, we must first describe the global objec-
tive in terms of the entire dataset. However, this

7On Titan X GPUs, the training takes about a week.
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(Van de Cruys, 2011)
SI1(x, y, c) log P (x,y,·)P (x,·,c)P (·,y,c)

P (x,·,·)P (·,y,·)P (·,·,c)P (x,y,c)

SI2(x, y, c) log P (x,y,c)
P (x,·,·)P (·,y,·)P (·,·,c)

(Jameel et al., 2018)
SI3(x, y, c) log P (x,y,c)

P (x,y,·)P (·,·,c)

SI4(x, y, c) log P (x,y,c)P (·,·,c)
P (x,·,c)P (·,y,c)

(This Work) MV PMI(x, y, c) log P (x,y,c)
kcP (·,·,c)P (x,y,·)+kxP (x,·,·)P (·,y,c)+kyP (·,y,·)P (x,·,c)

Table 9: Multivariate generalizations of PMI.

cannot be done by simply summing the local ob-
jective for each (x, y, c), since each such example
may appear multiple times in our dataset. More-
over, due to the nature of negative sampling, the
number of times an (x, y, c) triplet appears as a
positive example will almost always be different
from the number of times it appears as a negative
one. Therefore, we must determine the frequency
in which each triplet appears in each role.

We first denote the number of times the exam-
ple (x, y, c) appears in the dataset as #(x, y, c);
this is also the number of times (x, y, c) is used as
a positive example. We observe that the expected
number of times (x, y, c) is used as a corrupt x ex-
ample is kxP (x, ·, ·)#(·, y, c), since (x, y, c) can
only be created as a corrupt x example by ran-
domly sampling x from an example that already
contained y and c. The number of times (x, y, c)
is used as a corrupt y or c example can be derived
analogously. Therefore, the global objective of our
trenary negative sampling approach is:

JGlobal
3NS =

∑
(x,y,c)

Jx,y,c
3NS (17)

Jx,y,c
3NS = #(x, y, c) · log σ (Sx,y,c)

+ Z ′x,y,c · log σ (−Sx,y,c) (18)

Z ′x,y,c = kxP (x, ·, ·)#(·, y, c)Jx,y,c
−

+ kyP (·, y, ·)#(x, ·, c)Jx,y,c
−

+ kcP (·, ·, c)#(x, y, ·)Jx,y,c
− (19)

Sx,y,c = R(x, y) · C(c) (20)

With the global objective, we can now ask what
is the optimal value of Sx,y,c (20) by comparing
the partial derivative of (17) to zero. This deriva-
tive is in fact equal to the partial derivative of (18),
since it is the only component of the global objec-
tive in which R(x, y) · C(c) appears:

0 =
∂JGlobal

3NS

∂Sx,y,c
=
∂Jx,y,c

3NS

∂Sx,y,c

The partial derivative of (18) can be expressed as:

0 = #(x, y, c) · σ (−Sx,y,c)− Z ′x,y,c · σ (Sx,y,c)

which can be reformulated as:

Sx,y,c = log
#(x, y, c)

Z ′x,y,c

By expanding the fraction by 1/#(·, ·, ·) (i.e. di-
viding by the size of the dataset), we essentially
convert all the frequency counts (e.g. #(x, y, z))
to empirical probabilities (e.g. P (x, y, z)), and ar-
rive at Equation (1) in Section 2.2.

B.3 Other Multivariate PMI Formulations
Previous work has proposed different multivariate
formulations of PMI, shown in Table 9. Van de
Cruys (2011) presented specific interaction infor-
mation (SI1) and specific correlation (SI2). In
addition to those metrics, Jameel et al. (2018) ex-
perimented with SI3, which is the bivariate PMI
between (x, y) and c, and with SI4. Our formula-
tion deviates from previous work, and, to the best
of our knowledge, cannot be trivially expressed by
one of the existing metrics.


