Multilingual prediction of Alzheimer’s disease through domain adaptation and concept-based language modelling

Kathleen C. Fraser, Nicklas Linz, Bai Li, Kristina Lundholm Fors, Frank Rudzicz, Alexandra König, Jan Alexandersson, Philippe Robert, Dimitrios Kokkinakis


Abstract
There is growing evidence that changes in speech and language may be early markers of dementia, but much of the previous NLP work in this area has been limited by the size of the available datasets. Here, we compare several methods of domain adaptation to augment a small French dataset of picture descriptions (n = 57) with a much larger English dataset (n = 550), for the task of automatically distinguishing participants with dementia from controls. The first challenge is to identify a set of features that transfer across languages; in addition to previously used features based on information units, we introduce a new set of features to model the order in which information units are produced by dementia patients and controls. These concept-based language model features improve classification performance in both English and French separately, and the best result (AUC = 0.89) is achieved using the multilingual training set with a combination of information and language model features.
Anthology ID:
N19-1367
Volume:
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
Month:
June
Year:
2019
Address:
Minneapolis, Minnesota
Editors:
Jill Burstein, Christy Doran, Thamar Solorio
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
3659–3670
Language:
URL:
https://aclanthology.org/N19-1367
DOI:
10.18653/v1/N19-1367
Bibkey:
Cite (ACL):
Kathleen C. Fraser, Nicklas Linz, Bai Li, Kristina Lundholm Fors, Frank Rudzicz, Alexandra König, Jan Alexandersson, Philippe Robert, and Dimitrios Kokkinakis. 2019. Multilingual prediction of Alzheimer’s disease through domain adaptation and concept-based language modelling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3659–3670, Minneapolis, Minnesota. Association for Computational Linguistics.
Cite (Informal):
Multilingual prediction of Alzheimer’s disease through domain adaptation and concept-based language modelling (Fraser et al., NAACL 2019)
Copy Citation:
PDF:
https://aclanthology.org/N19-1367.pdf