@inproceedings{li-etal-2019-strength,
title = "The Strength of the Weakest Supervision: Topic Classification Using Class Labels",
author = "Li, Jiatong and
Zheng, Kai and
Xu, Hua and
Mei, Qiaozhu and
Wang, Yue",
editor = "Kar, Sudipta and
Nadeem, Farah and
Burdick, Laura and
Durrett, Greg and
Han, Na-Rae",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Student Research Workshop",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-3004/",
doi = "10.18653/v1/N19-3004",
pages = "22--28",
abstract = "When developing topic classifiers for real-world applications, we begin by defining a set of meaningful topic labels. Ideally, an intelligent classifier can understand these labels right away and start classifying documents. Indeed, a human can confidently tell if an article is about science, politics, sports, or none of the above, after knowing just the class labels. We study the problem of training an initial topic classifier using only class labels. We investigate existing techniques for solving this problem and propose a simple but effective approach. Experiments on a variety of topic classification data sets show that learning from class labels can save significant initial labeling effort, essentially providing a {\textquotedblright}free{\textquotedblright} warm start to the topic classifier."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2019-strength">
<titleInfo>
<title>The Strength of the Weakest Supervision: Topic Classification Using Class Labels</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiatong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiaozhu</namePart>
<namePart type="family">Mei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Farah</namePart>
<namePart type="family">Nadeem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Burdick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Durrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Na-Rae</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>When developing topic classifiers for real-world applications, we begin by defining a set of meaningful topic labels. Ideally, an intelligent classifier can understand these labels right away and start classifying documents. Indeed, a human can confidently tell if an article is about science, politics, sports, or none of the above, after knowing just the class labels. We study the problem of training an initial topic classifier using only class labels. We investigate existing techniques for solving this problem and propose a simple but effective approach. Experiments on a variety of topic classification data sets show that learning from class labels can save significant initial labeling effort, essentially providing a ”free” warm start to the topic classifier.</abstract>
<identifier type="citekey">li-etal-2019-strength</identifier>
<identifier type="doi">10.18653/v1/N19-3004</identifier>
<location>
<url>https://aclanthology.org/N19-3004/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>22</start>
<end>28</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Strength of the Weakest Supervision: Topic Classification Using Class Labels
%A Li, Jiatong
%A Zheng, Kai
%A Xu, Hua
%A Mei, Qiaozhu
%A Wang, Yue
%Y Kar, Sudipta
%Y Nadeem, Farah
%Y Burdick, Laura
%Y Durrett, Greg
%Y Han, Na-Rae
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F li-etal-2019-strength
%X When developing topic classifiers for real-world applications, we begin by defining a set of meaningful topic labels. Ideally, an intelligent classifier can understand these labels right away and start classifying documents. Indeed, a human can confidently tell if an article is about science, politics, sports, or none of the above, after knowing just the class labels. We study the problem of training an initial topic classifier using only class labels. We investigate existing techniques for solving this problem and propose a simple but effective approach. Experiments on a variety of topic classification data sets show that learning from class labels can save significant initial labeling effort, essentially providing a ”free” warm start to the topic classifier.
%R 10.18653/v1/N19-3004
%U https://aclanthology.org/N19-3004/
%U https://doi.org/10.18653/v1/N19-3004
%P 22-28
Markdown (Informal)
[The Strength of the Weakest Supervision: Topic Classification Using Class Labels](https://aclanthology.org/N19-3004/) (Li et al., NAACL 2019)
ACL