@inproceedings{morabia-etal-2019-sedtwik,
title = "{SEDTW}ik: Segmentation-based Event Detection from Tweets Using {W}ikipedia",
author = "Morabia, Keval and
Bhanu Murthy, Neti Lalita and
Malapati, Aruna and
Samant, Surender",
editor = "Kar, Sudipta and
Nadeem, Farah and
Burdick, Laura and
Durrett, Greg and
Han, Na-Rae",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Student Research Workshop",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-3011/",
doi = "10.18653/v1/N19-3011",
pages = "77--85",
abstract = "Event Detection has been one of the research areas in Text Mining that has attracted attention during this decade due to the widespread availability of social media data specifically twitter data. Twitter has become a major source for information about real-world events because of the use of hashtags and the small word limit of Twitter that ensures concise presentation of events. Previous works on event detection from tweets are either applicable to detect localized events or breaking news only or miss out on many important events. This paper presents the problems associated with event detection from tweets and a tweet-segmentation based system for event detection called SEDTWik, an extension to a previous work, that is able to detect newsworthy events occurring at different locations of the world from a wide range of categories. The main idea is to split each tweet and hash-tag into segments, extract bursty segments, cluster them, and summarize them. We evaluated our results on the well-known Events2012 corpus and achieved state-of-the-art results. Keywords: Event detection, Twitter, Social Media, Microblogging, Tweet segmentation, Text Mining, Wikipedia, Hashtag."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="morabia-etal-2019-sedtwik">
<titleInfo>
<title>SEDTWik: Segmentation-based Event Detection from Tweets Using Wikipedia</title>
</titleInfo>
<name type="personal">
<namePart type="given">Keval</namePart>
<namePart type="family">Morabia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Neti</namePart>
<namePart type="given">Lalita</namePart>
<namePart type="family">Bhanu Murthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aruna</namePart>
<namePart type="family">Malapati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surender</namePart>
<namePart type="family">Samant</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Farah</namePart>
<namePart type="family">Nadeem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Burdick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Durrett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Na-Rae</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Event Detection has been one of the research areas in Text Mining that has attracted attention during this decade due to the widespread availability of social media data specifically twitter data. Twitter has become a major source for information about real-world events because of the use of hashtags and the small word limit of Twitter that ensures concise presentation of events. Previous works on event detection from tweets are either applicable to detect localized events or breaking news only or miss out on many important events. This paper presents the problems associated with event detection from tweets and a tweet-segmentation based system for event detection called SEDTWik, an extension to a previous work, that is able to detect newsworthy events occurring at different locations of the world from a wide range of categories. The main idea is to split each tweet and hash-tag into segments, extract bursty segments, cluster them, and summarize them. We evaluated our results on the well-known Events2012 corpus and achieved state-of-the-art results. Keywords: Event detection, Twitter, Social Media, Microblogging, Tweet segmentation, Text Mining, Wikipedia, Hashtag.</abstract>
<identifier type="citekey">morabia-etal-2019-sedtwik</identifier>
<identifier type="doi">10.18653/v1/N19-3011</identifier>
<location>
<url>https://aclanthology.org/N19-3011/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>77</start>
<end>85</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SEDTWik: Segmentation-based Event Detection from Tweets Using Wikipedia
%A Morabia, Keval
%A Bhanu Murthy, Neti Lalita
%A Malapati, Aruna
%A Samant, Surender
%Y Kar, Sudipta
%Y Nadeem, Farah
%Y Burdick, Laura
%Y Durrett, Greg
%Y Han, Na-Rae
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F morabia-etal-2019-sedtwik
%X Event Detection has been one of the research areas in Text Mining that has attracted attention during this decade due to the widespread availability of social media data specifically twitter data. Twitter has become a major source for information about real-world events because of the use of hashtags and the small word limit of Twitter that ensures concise presentation of events. Previous works on event detection from tweets are either applicable to detect localized events or breaking news only or miss out on many important events. This paper presents the problems associated with event detection from tweets and a tweet-segmentation based system for event detection called SEDTWik, an extension to a previous work, that is able to detect newsworthy events occurring at different locations of the world from a wide range of categories. The main idea is to split each tweet and hash-tag into segments, extract bursty segments, cluster them, and summarize them. We evaluated our results on the well-known Events2012 corpus and achieved state-of-the-art results. Keywords: Event detection, Twitter, Social Media, Microblogging, Tweet segmentation, Text Mining, Wikipedia, Hashtag.
%R 10.18653/v1/N19-3011
%U https://aclanthology.org/N19-3011/
%U https://doi.org/10.18653/v1/N19-3011
%P 77-85
Markdown (Informal)
[SEDTWik: Segmentation-based Event Detection from Tweets Using Wikipedia](https://aclanthology.org/N19-3011/) (Morabia et al., NAACL 2019)
ACL
- Keval Morabia, Neti Lalita Bhanu Murthy, Aruna Malapati, and Surender Samant. 2019. SEDTWik: Segmentation-based Event Detection from Tweets Using Wikipedia. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 77–85, Minneapolis, Minnesota. Association for Computational Linguistics.