@inproceedings{yang-etal-2019-end-end,
title = "End-to-End Open-Domain Question Answering with {BERT}serini",
author = "Yang, Wei and
Xie, Yuqing and
Lin, Aileen and
Li, Xingyu and
Tan, Luchen and
Xiong, Kun and
Li, Ming and
Lin, Jimmy",
editor = "Ammar, Waleed and
Louis, Annie and
Mostafazadeh, Nasrin",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics (Demonstrations)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-4013/",
doi = "10.18653/v1/N19-4013",
pages = "72--77",
abstract = "We demonstrate an end-to-end question answering system that integrates BERT with the open-source Anserini information retrieval toolkit. In contrast to most question answering and reading comprehension models today, which operate over small amounts of input text, our system integrates best practices from IR with a BERT-based reader to identify answers from a large corpus of Wikipedia articles in an end-to-end fashion. We report large improvements over previous results on a standard benchmark test collection, showing that fine-tuning pretrained BERT with SQuAD is sufficient to achieve high accuracy in identifying answer spans."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2019-end-end">
<titleInfo>
<title>End-to-End Open-Domain Question Answering with BERTserini</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuqing</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aileen</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingyu</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luchen</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kun</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jimmy</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Waleed</namePart>
<namePart type="family">Ammar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nasrin</namePart>
<namePart type="family">Mostafazadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We demonstrate an end-to-end question answering system that integrates BERT with the open-source Anserini information retrieval toolkit. In contrast to most question answering and reading comprehension models today, which operate over small amounts of input text, our system integrates best practices from IR with a BERT-based reader to identify answers from a large corpus of Wikipedia articles in an end-to-end fashion. We report large improvements over previous results on a standard benchmark test collection, showing that fine-tuning pretrained BERT with SQuAD is sufficient to achieve high accuracy in identifying answer spans.</abstract>
<identifier type="citekey">yang-etal-2019-end-end</identifier>
<identifier type="doi">10.18653/v1/N19-4013</identifier>
<location>
<url>https://aclanthology.org/N19-4013/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>72</start>
<end>77</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T End-to-End Open-Domain Question Answering with BERTserini
%A Yang, Wei
%A Xie, Yuqing
%A Lin, Aileen
%A Li, Xingyu
%A Tan, Luchen
%A Xiong, Kun
%A Li, Ming
%A Lin, Jimmy
%Y Ammar, Waleed
%Y Louis, Annie
%Y Mostafazadeh, Nasrin
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F yang-etal-2019-end-end
%X We demonstrate an end-to-end question answering system that integrates BERT with the open-source Anserini information retrieval toolkit. In contrast to most question answering and reading comprehension models today, which operate over small amounts of input text, our system integrates best practices from IR with a BERT-based reader to identify answers from a large corpus of Wikipedia articles in an end-to-end fashion. We report large improvements over previous results on a standard benchmark test collection, showing that fine-tuning pretrained BERT with SQuAD is sufficient to achieve high accuracy in identifying answer spans.
%R 10.18653/v1/N19-4013
%U https://aclanthology.org/N19-4013/
%U https://doi.org/10.18653/v1/N19-4013
%P 72-77
Markdown (Informal)
[End-to-End Open-Domain Question Answering with BERTserini](https://aclanthology.org/N19-4013/) (Yang et al., NAACL 2019)
ACL
- Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019. End-to-End Open-Domain Question Answering with BERTserini. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 72–77, Minneapolis, Minnesota. Association for Computational Linguistics.