@inproceedings{shen-etal-2019-skillbot,
title = "{S}kill{B}ot: Towards Automatic Skill Development via User Demonstration",
author = "Shen, Yilin and
Ray, Avik and
Jin, Hongxia and
Nama, Sandeep",
editor = "Ammar, Waleed and
Louis, Annie and
Mostafazadeh, Nasrin",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics (Demonstrations)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-4018",
doi = "10.18653/v1/N19-4018",
pages = "105--109",
abstract = "We present SkillBot that takes the first step to enable end users to teach new skills in personal assistants (PA). Unlike existing PA products that need software developers to build new skills via IDE tools, an end user can use SkillBot to build new skills just by naturally demonstrating the task on device screen. SkillBot automatically develops a natural language understanding (NLU) engine and implements the action without the need of coding. On both benchmark and in-house datasets, we validate the competitive performance of SkillBot automatically built NLU. We also observe that it only takes a few minutes for an end user to build a new skill using SkillBot.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shen-etal-2019-skillbot">
<titleInfo>
<title>SkillBot: Towards Automatic Skill Development via User Demonstration</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yilin</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avik</namePart>
<namePart type="family">Ray</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongxia</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandeep</namePart>
<namePart type="family">Nama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Waleed</namePart>
<namePart type="family">Ammar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nasrin</namePart>
<namePart type="family">Mostafazadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present SkillBot that takes the first step to enable end users to teach new skills in personal assistants (PA). Unlike existing PA products that need software developers to build new skills via IDE tools, an end user can use SkillBot to build new skills just by naturally demonstrating the task on device screen. SkillBot automatically develops a natural language understanding (NLU) engine and implements the action without the need of coding. On both benchmark and in-house datasets, we validate the competitive performance of SkillBot automatically built NLU. We also observe that it only takes a few minutes for an end user to build a new skill using SkillBot.</abstract>
<identifier type="citekey">shen-etal-2019-skillbot</identifier>
<identifier type="doi">10.18653/v1/N19-4018</identifier>
<location>
<url>https://aclanthology.org/N19-4018</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>105</start>
<end>109</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SkillBot: Towards Automatic Skill Development via User Demonstration
%A Shen, Yilin
%A Ray, Avik
%A Jin, Hongxia
%A Nama, Sandeep
%Y Ammar, Waleed
%Y Louis, Annie
%Y Mostafazadeh, Nasrin
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F shen-etal-2019-skillbot
%X We present SkillBot that takes the first step to enable end users to teach new skills in personal assistants (PA). Unlike existing PA products that need software developers to build new skills via IDE tools, an end user can use SkillBot to build new skills just by naturally demonstrating the task on device screen. SkillBot automatically develops a natural language understanding (NLU) engine and implements the action without the need of coding. On both benchmark and in-house datasets, we validate the competitive performance of SkillBot automatically built NLU. We also observe that it only takes a few minutes for an end user to build a new skill using SkillBot.
%R 10.18653/v1/N19-4018
%U https://aclanthology.org/N19-4018
%U https://doi.org/10.18653/v1/N19-4018
%P 105-109
Markdown (Informal)
[SkillBot: Towards Automatic Skill Development via User Demonstration](https://aclanthology.org/N19-4018) (Shen et al., NAACL 2019)
ACL
- Yilin Shen, Avik Ray, Hongxia Jin, and Sandeep Nama. 2019. SkillBot: Towards Automatic Skill Development via User Demonstration. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 105–109, Minneapolis, Minnesota. Association for Computational Linguistics.