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Abstract
In this paper, we introduce a hybrid method to associate English collocations with sense class 
members chosen from WordNet. Our combinational approach includes a learning-based 
method, a paraphrase-based method and a sense frequency ranking method. At training time, 
a set of collocations with their tagged senses is prepared. We use the sentence information 
extracted from a large corpus and cross-lingual information to train a learning-based model. 
At run time, the corresponding senses of an input collocation will be decided via majority 
voting. The three outcomes participated in voting are as follows: 1. the result from a 
learning-based model; 2. the result from a paraphrase-based model; 3. the result from sense 
frequency ranking method. The sense with most votes will be associated with the input 
collocation. Evaluation shows that the hybrid model achieves significant improvement when 
comparing with the other method described in evaluation time. Our method provides more 
reliable result on associating collocations with senses that can help lexicographers in 

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

47



compilation of collocations dictionaries and assist learners to understand collocation usages.

Keywords: supersense tagging, collocation classification, word sense disambiguation, 
WordNet, maximum entropy model, Paraphrase. 

1 Introduction 
A collocation is a pair of words that co-occur with more frequency than random. A 
collocation usually contains a base word (e.g., “oil” in fuel oil) and a collocate (e.g., “fuel” in 
fuel oil). In a collocations dictionary, we can find many collocates of a base word (e.g., fuel 
oil, motor oil, peanut oil, salad oil). Some collocations dictionaries show the collocates for all 
senses, while other collocations dictionaries present the collocates by senses of a base word 
so learners can better grasp the usage of a collocation. 

Determining the set of broad senses to classify collocations is not an easy task. 
Researches have used thesaurus topics such as Roget’s (Yarowsky, 1992) or arbitrarily 
top-level WordNet senses as classes. There are 44 semantic classes called lexicographer-files 
and each synset in WordNet is assigned to one lexicographer-file. There are 26 
lexicographer-files (or supersenses), which can be used to tag common nouns. Consider the 
word “oil” which can be used as fuel/to make machines work smoothly, or as belonging to the 
noun.substance supersense and used in cooking could be seen as belonging to the noun.food
supersense.

In this paper, we present a hybrid model that automatically associated a given 
collocation with the corresponding supersense. The hybrid model is composed of a 
learning-based method, a paraphrase-based method and a sense frequency ranking method. 
The output supersense of a collocation is decided via majority vote of the above three 
methods. 

At training time, we need some collocations tagged with supersenses as seeds. There are 
a huge number of collocations in WordNet, so we can use those collocation and supersense 
pairs to train the model. Sentences containing the input collocations extracted from a large 
corpus and Chinese translation of the collocations are used as features of the model. We will 
descript the training process in more details in Chapter 3.

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

48



Figure 1. An example procedure for associating the collocation of fuel oil with a supersense
noun.substance 

An example procedure for associating the collocation of fuel oil with a supersense 
noun.substance is shown in Figure 1. We extract sentences containing the input collocation 
from a corpus and take the sentences and Chinese translation as features. Then, we use the 
pre-trained machine learning model to predict the supersense. Second, we use the words 
similarity and words dependency relations to paraphrase the base word. Then, we calculate 
the WordNet similarity of base word and the paraphrases to identify the supersense. Third, we 
simply list the lexicographer-files of the input collocation base word and choose the first one 
as the supersense since the order of the list corresponds to the sense frequency of that word. 
At last, a relative majority vote for the three results determines the final output.

The experimental results show that our hybrid method can automatically associate 
collocations with supersenses with a higher performance than the baseline method. The 
results can also be used to help lexicographers in compilation of a collocations dictionary. 
Furthermore, learners could understand the usage of collocations in a specific sense. 

2 Related Work
Associating collocations with supersenses in WordNet is similar to Word Sense 
Disambiguation (WSD), the process of identifying the meaning of a specific word in a given 
context. In this paper, we address a special case of disambiguating the headword of a given 
collocation.  

Previous work in WSD is mostly based on some kind of machine learning models. 
Hearst (1991) uses a set of orthographic, syntactic and lexical features to train large text 
corpora and disambiguates noun homographs. Yarowsky (1992) uses Naïve Bayesian model 
to train large corpora to disambiguate words to Roget’s Thesaurus categories. Leacock, 
Towell and Voorhees (1993) bases on Bayesian decision theory, neural networks and content 
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vectors to train the knowledge about patterns of words co-occurrences and disambiguates 
words to WordNet senses. The main disadvantage is that the demand of annotated training 
data which are time-consuming and labor intensive to obtain.  

In a work more closely to our research, Inumella, Kilgarriff and Kovar (2009) try to 
assign the collocations for a word that automatically identified from a large corpus to its 
distinct senses. Their short term goal is to generate a new English collocations dictionary 
(Macmillan Collocation Dictionary). Most of the previous works focus on words level, while 
this research focuses on collocations. We describe two of their automatic approaches: 
Thesaurus method and Yarowsky’s method (1995). The thesaurus method works on the 
promise that a sense shares its collocates with its thesaurus class members. For example, 
consider a thesaurus class with six members {cricket, butterfly, leech, worm, bee, queen}, 
they extract collocates such as young, fly, feed, breed that at least appear in two class 
members and insert them to that sense. Another method is Yarowsky’s method, which relies 
on the heuristic of “one sense per collocation” (Yarowsky, 1993) and “one sense per 
discourse” (Gale, Church and Yarowsky, 1992). The algorithm first collects some seed 
collocations with senses by dictionary-parsing and uses supervised classification algorithms 
for training and labeling. Then they add new labeled collocations to training set and repeat 
labeling. Finally, they use a decision list algorithm to terminate. 

In contrast to previous works in Word Sense Disambiguation and semantic classification, 
we present a hybrid system that automatically associates collocations to supersenses using a 
learning-based method, a paraphrase-based method and a sense frequency ranking method, 
with the goal to help lexicographers in compilation of collocation dictionaries and help 
learners to better grasp the usage of a collocation. We describe the method in more details in 
the next chapter.

3 Method 
Associating collocations (e.g., required course) with dictionary senses often does not work 
very well. To obtain a better performance, we introduce a learning-based method using 
context and cross-lingual features, a paraphrase-based method using words similarity relation 
and dependency relation, and a sense frequency ranking method.  

3.1 Problem Statement
We focus on automatically associating collocations with corresponding supersenses. The 
output senses could be used by lexicographers to save effort in compile collocations 
dictionaries and learners can better grasp the usage of a collocation. Supersenses are 26 
lexicographer-files in WordNet noun hierarchy chosen by lexicographers and are believed to 
be general enough for sense allocation. 

3.2 Training Sense Assignment Models

In this section, we explain our approaches to find the supersense including a learning-based 
method, a paraphrase-based method and a sense frequency ranking method. Figure 2
describes the processes of our methods.

(1) Generate collocation and supersense pairs from WordNet (Section 3.2.1) 
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(2) Train machine learning model from corpus for collocations (Section 3.2.2) 

(3) Obtain supersense using machine learning model (Section 3.2.3) 

(4) Obtain supersense using similarity and dependency information (Section 3.2.4) 

(5) Obtain supersense using sense frequency ranking from WordNet (Section 3.2.5) 

Figure 2. Outline of the process for obtaining supersense in different approaches

fuel oil noun.substance 

electrical discharge noun.event 

busy day noun.time 

required course noun.act 

fitted sheet noun.artifact 

bus driver noun.person 

Figure 3. Example of collocation and supersense pairs extracted from WordNet

3.2.1  Generating Collocation and Supersense Pairs

In the first stage (Step (1) in Figure 2), we attempt to find a set of collocations and their 
pre-tagged supersenses pairs 

as seeds collocations to train a machine learning model � from WordNet. For example, the 
supersense for a collocation fuel oil is noun.substance. Examples of collocation and 
supersense pairs extracted from WordNet are shown in Figure 3.

We use two heuristics to achieve this goal. First, we go through each hyponyms of noun 
synsets and examine their lemma names to find collocations. For example, consider a synset 
Synset('discharge.n.01'), one of its lemma name is discharge and one of its hyponyms is 
Synset('electrical_discharge.n.01') with a lemma name electrical_discharge. Since the base 
word of electrical_discharge matches Synset('discharge.n.01')’s lemma name discharge, we 
can take electrical discharge as a collocation and the lexicographer-file of 
Synset('discharge.n.01') noun.event as a supersense to form the 
< ����������	, 
���
	
 > pair, (electronic discharge, noun.event).

Second, we search the collocations from definitions and example sentences  of 

each noun synset. We utilize a parser to generate part-of-speech and lemma for  and 
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. For a noun synset , one of its lemma name is , and the definition or example 
� as one of our selected < ����������	, 
���
	
 > pair. For example, a synset 
Synset('day.n.05') has one lemma name day and one example sentence “it was a busy day on
the stock exchange”. So we can take busy day as a collocation and the lexicographer-file 
noun.time as a supersense to form the < ����������	, 
���
	
 > pair, (busy day, 
noun.time). 

3.2.2 Training Machine Learning Model

In the second stage (Step (2) in Figure 2), we use the collocation and supersense pairs 
obtained in section 3.2.1 to find sentences to train a sense classifier. First, a parser is used for 
generating part-of-speech tag and lemma form for all sentences in the monolingual corpus 
� and search from on-line machine translating system �� for Chinese collocation 
translation.

For example, consider the collocation required course and its supersense noun.act. We can 
find sentence such as “A required course for all students, to be completed before the end of 
the third year, and to be examined by individual colleges” from �� and its Chinese 
collocation translation “ ” from on-line translation resource. The base word course has 
6 different supersenses, but the words like students, third year, examined, colleges are highly 
related to the collocation required course and the supersense noun.act rather than other 
supersenses such as noun.food, noun.artifact or noun.object. The Chinese translation provides 
cross-lingual information like “ ” to disambiguate the sense of course. The other translation 
for course like “ ” or “ ” would lead to different supersenses.

The input to this stage is a set of features. The above example required course showed that 
context words of a collocation may contain some words highly related to the corresponding 
supersense and cross-lingual information for a collocation also helps to disambiguate the 
supersense. So the features we use for one training event are

(1) unigram and bigram of a sentence extracted from  containing the collocation
(2) Chinese translation of the collocation from ��

For each pairs in , we extract sentences containing from as

and obtain Chinese translation of ��� from �� as ���	
. Then, for each 

sentence �	� in �	�	�
, we extract unigram �	� and bigram �� from �	�. Note 
that stopwords are filtered for both �	� and ��. The next step, we use �	�, �� and ���	


as features and � as the standard output supersense to append machine learning event to 
�����
. Note that ���	
 actually transforms to a list of unigram and bigram of Chinese 
words while training. The output of this stage is a probability model � trained from a set of 
training events �����
 for predicting the collocation supersenses using a machine 
learning tool ��.

3.2.3 Obtaining supersense using machine learning model
In the third stage (Step (3) in Figure 2), we attempt to predict the supersense for the input 
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collocation (�, �) using the machine learning model � described in Section 3.2.2. The 
runtime procedure is similar to the training algorithm.

First, we extract sentences containing from as �	�	�
 (Step(1a) in 

Figure 4) and use on-line machine translation system �� to obtain Chinese translation of 
(�, �) as ���	 (Step(1b)). For associating (�, �) with a supersense, we only consider 
� in �	�	�
, we extract unigram �	� (Step (2a)) and bigram �� (Step (2b)) from �	�.
Stopwords are filtered for both �	� and �� similar to what is done at training time. Then, 
�	�, �� and ���	 are combined together to predict the supersenses using �. The output 
of � is a supersense probability list ��������
� that contains all supersenses and the 
probability for (�, �) (Step 3)).

Algorithm 2.  Obtaining supersense using machine learning model

PROCEDURE MachineLearningEvaluateSupersense( )

(1a)  Sentences = extractSentences( , )

(1b)  Trans = getTranslation( )
(1c)  Candidates = getLexFiles( ) 
     topScore = �, topSense = �, freq = �, totalProb = �, avgProb = �, outcome = �

     for each in Sentences

(2a)      Uni = extractUnigram( )
(2b)      Bi = extractBigram( )
(3)       predictList = M(Uni, Bi, Trans)

for each ( , ) in predictList

             if in Candidate and ( > numProb) 
(4a)            =
(4b)             =

(5a)      = Max( )

(5b)     = that has Max( )

(5c)     +=
(5d)     += 1

for each in 
(6)      = ( , )
(7) rankedSenses = Sort outcome in decreasing order of freq, if more than 1 sense  

share same frequency, sofrt those sense in decreasing order of  
average probability

(8)  Return the top rankedSenses
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Figure 4. Algorithm for obtaining supersense using machine learning model 

We go through each ( , ) in  and keep ( , ) as

( , ) if both in  and higher than a 

probability threshold (Step (4a and 4b)). Then we choose maximum 

as , the corresponding as (Step (5a) and (5b)). A 

dictionary is used to store the probability sum of each distinct 

, and another dictionary is used to store the frequency of each distinct 

(Step (5c) and (5d)). For each 
	
 in ���������, we store the frequency 
���[
	
] and the average sense probability ��������� 
	
 /���[
	
]  to
������ (Step (6)). Then, we sort ������ in decreasing order of frequency as 
��	���	

. If there is more than one sense in ������ that have the same frequency, 
they would be sorted in decreasing order of the average sense probability. Finally, we output 
�� (Step (7)).

Corpus-based machine learning for associating collocations with supersenses can reduce the 
sense dominance problem, since context words of different supersenses are generally 
different and translations of a same base word in different senses tend to be different, too. 
With this in mind, we use sentences of a collocation extracted from a corpus and the 
collocation translation to disambiguate the supersenses of the base word of a given 
collocation. 

3.2.4 Obtain supersense using similarity & dependency information
In the fourth stage (Step (4) in Figure 2), we use a paraphrase-based strategy to determine the 
supersense. A paraphrase is a restatement of the meaning of a text or passage using another 
form. By calculating the similarity between a collocation and its paraphrases, we can 
determine its supersense. This method is based on the assumption that original collocation 
shares the same supersense with its paraphrases.

For example, consider an input collocation fitted sheet using the paraphrase method. The 
word sheet has four supersenses: noun.object, noun.communication, noun.artifacrt,
noun.shape in WordNet. Paraphrase candidates of fitted sheet are coat, cloth, plate, pan, foil, 
plastic identified base on similar words list of sheet and coat, 

Table 1. Example similar words and dependent words of required course

Similar words of sheet Dependency relation of fitted
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('plate', 0.16), ('sheeting', 0.15) 

('pan', 0.14), ('steel', 0.14) 

('coat', 0.13), ('tube', 0.12) 

('metal', 0.12), ('paper', 0.12) 

('slab', 0.11), ('pipe', 0.11) 

('layer', 0.11), ('cold-rolled', 0.11) 

('stainless', 0.11), ('surface', 0.11) 

('glass', 0.11), ('tubing', 0.11) 

('booklet', 0.11), ('cut-sheet', 0.11) 

('cloth', 0.11), … 

('jacket', 9), ('suit', 5) 

('bodice', 3), ('less', 3)

('gown', 2), ('Top', 2) 

('carpet', 1), ('cloth', 1)

('coat', 1), ('leader', 1) 

('plaid', 1), ('topper', 1) 

('version', 1), ('a little', 1)

('long', 1), ('uniquely', 1) 

('around', 1), ('than', 1) 

cloth, jacket, suit based on dependency relations list of fitted. The intersection of the two 
candidate list contains coat and cloth. It means that coat and cloth are paraphrases of sheet
when collocating with fitted. The example similar words and dependency relations of fitted 
sheet is shown in Table 1.

Subsequently, we compare the synsets similarity for both (coat, sheet) and (cloth, sheet). The 
top-ranked similarity of (coat, sheet) is ((Synset('coating.n.01'), Synset('sheet.n.06')), 0.769)
and the lexicographer-file of Synset('sheet.n.06') is noun.artifact; the top-ranked similarity of 
(cloth, sheet) is ((Synset('fabric.n.01'), Synset('sail.n.01')), 0.857) and the lexicographer-file of 
Synset('sail.n.01') is noun.artifact. So the frequency of noun.artifact is 2, while other 
supersenses are all 0. We then output noun.artifact as the supersense of input collocation 
fitted sheet.

By using paraphrase-based method, words that related to the input collocation can be the 
extracted. The collocation could be disambiguated since most of the words with other senses 
tend not to share the paraphrases. So we can find the sense relation between input collocation 
and extracted words to obtain the supersense.

3.2.5 Obtaining supersense using sense frequency ranking
In the last stage (Step (5) in Figure 2), we use the sense frequency to identify the supersense. 
In many previous works on WSD, sense frequency plays an important role to indicate the 
sense. A word may have different senses, but most of time, it tends to associated with the 
dominant sense. So for disambiguating word senses, choosing the most frequent sense is 
often used as a baseline.

Many sense frequency methods are based on sense estimation in a corpus. But here we use 
the sense frequency information in WordNet. For any word in WordNet, there are one or more 
synsets and the synsets are listed in decreasing order of frequency. So we can simply return 
the first synset as the supersense. Sense frequency ranking method has the highest coverage, 
and that is important since our goal is to disambiguate all collocations. We also use this 
method as the baseline method to compare with our results. We will describe the details of 
evaluation in Chapter 4. 
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3.2.6 The Runtime Hybrid Process
Once the learning-based procedure, the paraphrase-based procedure and the sense frequency 
ranking procedure produce the supersenses, a relative majority vote is carried out to 
�� are the three predicted supersense described in sections 3.2.2 to 3.2.4. Each supersense 
has one vote and the supersense with the most votes is the final output �. As shown in Figure 
2, after running the three procedures for collocation fuel oil, we obtain noun.substance,
noun.artifact and noun.substance. The supersense noun.substance has 2 votes and 
noun.artifact has 1, so the final output � is noun.substance. 

Sometimes the three procedures produce 3 different supersenses without an agreement. 
Moreover, the learning-based procedure or the paraphrase-based procedure produce no results, 
because either the sentences containing the input collocation cannot be found in corpus ��,
or the paraphrases of the input collocation cannot be found and leads the voting has no 
agreement. In this case, we use back-off to find the supersense. When there is no agreement 
��. As long as the base word of the input collocation exists in WordNet, we can produce an 
output.  

4 Experimental Setting
We have proposed a hybrid model to associate collocations with broad sense classes, with the 
goal of helping lexicographers in compilation of collocation dictionaries. The evaluation 
focuses on the intended supersenses of a set of collocations produced by the proposed system. 
We extracted a set of collocation and supersense pairs from WordNet, so the evaluation could 
be done automatically.  

4.1 Data set
In our experiment, we used WordNet, a large lexical database of English which contains 
approximately 117,000 synsets and 155,000 sense-disambiguated words and collocations, to 
generate the collocations for training, developing and testing. As we have described in 
Section 3.2.1, collocations are extracted from WordNet using two heuristics: 

(1) extract collocations from hyponyms of noun synsets 
(2) extract collocations from definitions and examples sentences of noun synsets 

We extracted 18,586 collocation and supersense pairs from (1) and 1,784 pairs from (2). The 
extracted collocations were filtered through a collocation list. The collocation we used is a 
list of base word/collocates pairs for the top 60,000 lemmas from the Corpus of 
Contemporary American English (COCA) (Davies, 2008) which contains 4,200,000 
collocations. After this step, the total number of collocations was reduced to 7,489. With 
heuristic (2), we used GENIA tagger (Tsuruoka, 2005) which analyzes English sentences and 
outputs the base forms, part-of-speech tags, chunk tags, and named entity tags to tag the 
definitions and example sentences.

We randomly selected 829 collocations as development set and 6,660 for training and testing 
from the collocation and supersense pairs. For training and testing, we split the 6,660 
collocations into 10 parts that each part contains 666 collocations and we ran ten-fold 
validation to evaluate the performance of each part. 

In learning-based procedure, we employed Maximum Entropy (ME) model to associate input 
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collocations with supersenses. ME is a flexible statistical learning model that aims to 
maximize the entropy when characterizing some unknown events. The model estimates 
outcomes according to a set of features with least possible bias. The ME model we used for 
training and testing is Maximum Entropy Modeling Toolkit for Python and C++ (Zhang, 
2004). The features we used for the ME model is extracted from British National Corpus
(BNC), a 100 million word collection of samples of written and spoken language from a wide 
range of sources. We use GENIA tagger to tag the sentences in BNC and filtered the 
stopwords in the sentences using Natural Language Tool Kit (NLTK), a suite of open source 
program modules written in Python (Loper and Bird, 2002). More specifically, we used the 
stopwords in nltk.corpus and obtained the English stopwords list. Another feature, the 
Chinese translation of the collocations, was obtained from Google Translate. 

In the paraphrase-based procedure, we use a set of words with similar words which contains 
100,000 words and about 24,000,000 similar words and words with dependency relations 
which contains 20,000,000 dependency relations. The data is obtained using MINIPAR (Lin, 
1993), a broad-coverage parser for the English language. The similarity comparison 
algorithm for words used in this stage is JCN similarity (Jiang and Conrath, 1997). JCN 
similarity bases on the information content (IC, a measure of the specific of a concept) of the 
Least Common Subsumer (LCS, most specific ancestor node). According to (Sinha and 
Mihalcea, 2007), JCN similarity tends to work best for nouns.  

4.2 Methods compared
Our approach starts with an adjective-noun or noun-noun collocation given by a user, and 
determines the corresponding sense to the input collocation using external resources related 
to the input collocation. The output of our system is a supersense in WordNet associated with 
the input collocation that can be used to help lexicographers in compiling collocation 
dictionaries, or shown to English learners directly. 

In this paper, we have proposed a hybrid model for associating collocations with supersenses, 
in which we used a learning-based model, a paraphrase-based similarity comparison, and a 
sense frequency ranking method. Therefore, we compare the results based on each method 
and combination of the above methods for evaluating the system performance in more details.  

We compare different methods to associating the collocation with supersense using the test 
set described in Section 4.1. The methods evaluated for the comparison are listed as follows: 

— FR: Sense frequency ranking method as we described in Section 3.2.5, using the 
sense frequency information to determine the supersense of a collocation. This 
method is also the baseline method in our experiment. 

— LB: Learning-based method as we described in Section 3.2.3, using learning-based 
method to determine the supersense of a collocation. 

— LB+FR: Combinational method of learning-based method and sense frequency 
ranking method, using FR as a back-off if LB cannot be applied. 

— PB: Paraphrase-based method as we described in Section 3.2.4, using similarity and 
dependency relations of a collocation to determine the sense of that collocation. 

— PB+FR: Combinational method of paraphrase-based method and sense frequency 
ranking method, using FR as a back-off if PB cannot be applied. 
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— LB+PB: Combinational method of learning-based method and paraphrase-based
method, using PB as a back-off if LB cannot be applied.

— LB+PB+FR: Hybrid method of all methods we proposed. The running sequence is 
LB�PB�FR that LB determines all the test set, then PB determines those LB
cannot solve, then FR determines those PB cannot solve. 

— MV+BO: The most complete version of the system we proposed. First, we run the 
test set using all three methods LB, PB and FR and use relative majority vote to 
rank supersense results. The rest of collocations that cannot be determined run in the 
following sequence LB�PB�FR. 

5 Evaluation Result and Discussion
In this chapter, we report the evaluation results of our experiments using methodologies and 
the settings we described in Chapter 4. We evaluated 8 different methods as described in 
Section 4.2. We ran ten-fold validation on 6,660 random selected collocations. We report the 
average performance of the 10 test results. For non-learning based method, we evaluated the 
whole 6,660 collocations. Table 2 shows the performance for development dataset and test 
dataset in 8 different methods based on precision, recall and F-measure. 

Table 2. Performance for development dataset and test dataset in 8 different methods based 
on precision, recall and F-measure

strategy Development Set Test Set
Prec. Rec. F-m. Prec. Rec. F-m.

FR (baseline) .74 .74 .74 .75 .75 .75
LB .80 .61 .69 .80 .62 .70
LB+FR .78 .78 .78 .80 .80 .80
PB .79 .57 .66 .76 .55 .63
PB+FR .78 .78 .78 .76 .76 .76
LB+PB .80 .72 .76 .80 .72 .75
LB+PB+FR .80 .80 .80 .80 .80 .80
MV+BO .81 .81 .81 .81 .81 .81

For comparison, we used the baseline of sense frequency ranking method FR with 75% 
precision, recall and F-measure. The learning-based method LB achieves the precision 80% 
and recall 62% with 5% increases in precision. But the recall decreases since no sentences 
containing the collocations are found in the corpus. Those collocations are not given a 
supersense. If we add FR to the system as LB+FR, the precision, recall and F-measure 
increases to 80%. The paraphrase-based method PB on development dataset has a 5% 
increase on precision comparing with baseline, but on test dataset, the precision decreases to 
76% with a low recall of 55%. The low recall is due to the fact that many collocations 
paraphrases cannot be found. For this we also add FR to the system as a back-off and the 
precision, recall and F-measure of PB+FR increases to 76%. The experimental result on 
LB+PB shows that the precision maintains on 80%, and recall increases nearly 10% 
comparing with LB and achieves the highest recall in all the methods without FR.
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The performance of LB+PB+FR reaches 80%, the same as LB+FR since the performance of 
PB is not good as LB. We believe that using a relative majority vote to determine the 
supersense would lead a better performance. MV+BO confirms our hypothesis and achieves 
the best performance of precision, recall and F-measure 81%. The precision of majority vote 
that has 3 votes is 95% with recall of 33% while the majority with 2 votes is precision 79% 
and recall 34%. So with more than 2 votes, the precision reaches 87% with a recall of 67% 
and F-measure of 76%.

Take a deeper look in the sense dominance problem we mentioned in Chapter 3. 
Previous work suffered from that the collocations are often associated with dominant senses.
We show the performance of MV+BO when dealing with two different condition: (1) most 
frequent sense collocations, (2) non-most frequent sense collocations. We could see that when 
dealing with most frequent sense collocations, 93% of collocations can be correctly 
associated with supersenses. When dealing with non-most frequent sense collocations, we are 
still able to correctly associate 46% of collocations with supersenses. So we prove that the 
sense dominance problem can be reduced by using our hybrid algorithm. 

6 Conclusion 
Many avenues exist for future research and improvement of our system. For example, in the 
learning-based method, the recall could increase by using a larger corpus or the web data to 
extract more sentences as collocations’ features. The cases where the sentences of the input 
collocation are not found in a corpus could be reduced. Additionally, we could improve the 
quality of collocation translations to improve the performance of the learning-based method. 
In the paraphrase-based method, both precision and recall are not satisfactory, but we still 
believe that the method has potential. By generating a new similar words list and dependency 
relations list using a large corpus could produce better paraphrases for associating 
collocations with supersenses and increasing the recall. Most of the 26 supersenses are 
natural and reasonable. However, we still find that some supersenses are not very intuitive 
and may cause problems in tagging. So finding more appropriate set of classes is worth 
further study. 

In summary, we have introduced a hybrid method to automatically associate collocations 
with supersenses. Our goal is to help lexicographers in compilation of a collocation 
dictionary and help learners to better grasp the usage of a collocation. Our method is 
composed of a learning-based model, a paraphrase-based method, and a sense frequency 
ranking method. In our evaluation, we have shown that the hybrid method is significantly 
better compared with other methods described in this paper. And we also prove that our 
model can partially reduce the sense dominance problem.
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