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Abstract 

In this paper we introduce a method for searching appropriate articles from knowledge bases 
(e.g. Wikipedia) for a given query and its context. In our approach, this problem is transformed 
into a multi-class classification of candidate articles. The method involves automatically 
augmenting smaller knowledge bases using larger ones and learning to choose adequate 
articles based on hyperlink similarity between article and context. At run-time, keyphrases in 
given context are extracted and the sense ambiguity of query term is resolved by computing 
similarity of keyphrases between context and candidate articles. Evaluation shows that the 
method significantly outperforms the strong baseline of assigning most frequent articles to the 
query terms. Our method effectively determines adequate articles for given query-context 
pairs, suggesting the possibility of using our methods in context-aware search engines. 

Keywords: entity linking, word sense disambiguation, Wikipedia, support vector 
machine, search engine 

1 Introduction 

Today we surf the Internet through search engines most of the time. With the explosive growth 
of web pages, the accuracy and relevancy of search results have become ever more important. 
Traditional search engines accept keywords, and return a page full of possible relevant results. 
Then users can click one of the results to visit the sites they are interested in. We call this type 
of search “keyword-search”. Today, almost all search engines are keyword-based.  

However, various classes of results mixed in the search results. For example, when a user 
query the search engine with the keyword “apple”, the search results comprise of two major 
class, “Apple Inc.”, the computer company, and “apple”, a kind of fruit. With only one 
keyword, even state-of-the-art keyword-based search engines could not distinguish between 
different search intents. Unlike keyword search, context-aware search assume each query is 
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associated with a context. 

 

Figure 1. An example of context-aware search 

 

Figure 2. The mention “John McCarthy” and its context. 

In this paper, we present a prototypical system, In-Page Search, that automatically extract 
context information and use them to disambiguate ambiguous queries. Users could select the 
terms they are interested in, and then with a click of the mouse, the In-Page Search system 
shows a pop-up window with the most relevant results for the given context.(See Figure 1.) 
In-Page Search is similar to the “entity-linking problem”, which has long been an active 
research topic in IR and Database community. Entity-linking problem could be informally 
described as follows: given a knowledge base, in which every entry is an entity and its 
associated information. Given a mention and the context with the mention, determine the 
correct entity that the given mention really links to. For example, Figure 2 shows the mention 
“John McCarthy” and it’s context, in a knowledge base, there are more than 10 entities which 
may be linked to “John McCarthy”. The problem is determining the correct entity to link to. 
Intuitively, entity-linking could be considered a Named-Entity Disambiguation problem or 
more generally, a word sense disambiguation problem. 

In our approach, we also exploit the cross-language features in multi-language knowledge 
bases. This method augments information in one language with other languages in the same 
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knowledge base to cope with the data sparseness problem which may be a problem for a 
language with less data. We discuss this multi-language model and the definitions of various 
link-based similarity measures in Chapter 3. 

At run-time, In-Page Search starts with a query together with its context page submitted 
by the user. The system then extracts context terms and transforms them into machine-readable 
features. Finally, the system uses a SVM model (Chang and Lin, 2011) trained on a knowledge 
base to determine which entity in the knowledge base should be linked to the current query, and 
output a summarized abstract of this entity to the user. The results could be further augmented 
for other purposes. For example, for the input links to a geographic entity, we could show the 
location using a map application. 

The rest of this thesis is organized as follows. We review the related work in the following 
chapter. Then we describe our preprocessing and runtime algorithm in Chapter 3. We then 
report on the experimental setup and compare our results to various baselines in Chapter 4. 
Conclusions are provided in Chapter 5 along with the directions of future work. 

2 Related Work 

Search engines and related technology has long been an active research topic in information 
retrieval and natural language processing. Most modern search engines (e.g. Google, Bing, and 
Yahoo!) accept keyword or keyphrase as input. Today keyword search engines have excellent 
performance in terms of both results relevancy and response time. However, keyword search 
engines do not consider a query may come with a context, so they could not distinguish 
between different search intents. With the rise of the mobile web, some search engines have 
evolved to provide better user experience. One reprehensive example is the Google Now 
feature of mobile edition of Google. While accepting user’s voice input, it extracts user’s 
context information such as GPS location, user’s schedule recorded on calendar application, 
and the contact information on user’s cell phone. Thus, Google Now can analyze user’s search 
intent and provide the most relevant information using these contexts.  

Previously, much effort has been made in research on word sense disambiguation based 
on machine learning (Black, 1988; Hearst, 1991; Leacock, Towell, and Voorhees, 1993; Bruce 
and Wiebe, 1994). Yarowsky (Yarowsky, 1992) uses a Naïve Bayesian classifier trained on 
Roget’s thesaurus to classify words with given context into its sense category. They use 
class-based salient words list provided by Roget’s thesaurus as features and tuning weight by 
counting the frequencies of surrounding salient words in context. While achieving high 
accuracy, this research can be viewed as prototypical framework of most machine learning 
WSD systems. These approaches often rely on sense-labeled corpus. Although supervised 
machine learning WSD algorithms frequently gives high performance, however, sense-labeled 
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corpus is not always available. Compared to our approach, we use Wikipedia as our corpus, its 
cross-lingual nature enables us to augment smaller knowledge base with other languages.  

   An important branch of WSD is entity-linking. While WSD focuses on linking word to 
its correct sense given context, entity-linking systems focus on linking mentions of entities 
(often named-entities) to its correct entry in a given knowledge base. “Wikify” (Mihalcea and 
Csomai, 2007; Milne and Witten, 2008) is an example of entity-linking systems. These systems 
automatically augment user’s input texts with hyperlinks to Wikipedia entries. For example, 
imagine Figure 2 with links removed, these systems will automatically detect them with 
anchors links to proper Wikipedia articles (e.g. John McCarthy in Figure 2 links to John 
McCarthy (computer scientist) in Wikipedia.). Mihalcea’s system decomposes these task into 
two procedural: keyphrase extraction and word sense disambiguation. They achieve WSD by 
computing various linguistic features except the “Keyphraseness”: how frequently one phrase 
in Wikipedia being hyperlinks.  

 Milne and Witten’s system disambiguates mentions by incorporating more link-based 
measures. They apply normalized Google Distance (Cilibrasi and Vitanyi, 2007) to compute 
relatedness between two Wikipedia articles, and training machine learning models. Unlike 
Mihalcea’s system, they first disambiguate possible candidates in input document, and then use 
information from this pass of disambiguation to aid keyphrase extraction. Their system has 
good performance both on Wikipedia articles and wild-life news pages. 

Compared to our system, most entity-linking system developed their method on English, 
so they could not directly apply to languages that need segmentation pre-processing. To apply 
our method to CJK languages, we use a scheme similar in (Milne and Witten, 2008) to 
transform context page into vector of context entities. In addition, we extend traditional 
link-based measure to a cross-lingual augmented knowledge base. To the best of our 
knowledge, such technique hasn’t been shown in previous systems.  

3 Method 

Understanding a user’s search intent basing solely on query term (e.g., ) is a challenging 
task. Short query terms typically have more than one sense which leading to multiple entities in 
the knowledge base that could be linked to. To assign adequate entity for a given query, a 
promising method is to compute the similarity between a query’s context and candidate 
entities’ description, and returning the most similar entity (e.g. for ) in the 
context of a computer-related Chinese article. 

3.1 Problem Statement 

We focus on the essential step of determining user’s search intent: choosing the appropriate 
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entity in the knowledge base for the given query. Once the entity has determined, the system 
returns information of this entity in various ways (e.g. text description, image, audio, video). In 
a Wikipedia-like knowledge base, we treat each document as an entity, its description page as 
the context, and hyperlinks in this page as query terms. With the hyperlinked nature of such a 
knowledge base, we train a classifier which estimate the similarity of link structure between 
each query term’s context, and determine whether a query term and an entity (i.e. the article 
titles) should be linked together. Thus, the problem of context-aware search is transformed to 
an entity-linking problem. We now formally state the problem we are addressing by first giving 
a definition of Wikipedia-like knowledge base. 

A Wikipedia-like knowledge base is a collection of documents, each document should 
describe an unique concept with hyperlinks, inter-wiki links and disambiguation pages which 
list possible sense of an ambiguous term.  

Problem Statement: We are given a set of Wikipedia-like knowledge bases KB={ kb1 ,…, 
kbn| n ≥ 1 } (e.g., {Chinese Wikipedia, English Wikipedia}), a query term q, a context 
document c of q, and a knowledge base kbj � KB, where q should be searched. Our goal is to 
assign an adequate document ei, where ei � kbj = {e1,…, ej} and e1,…, ej are candidate senses. 
For this, we compute the link structure similarity between each document pair (c, e), where e is 
in kbj, and then train a classifier to determine which (c, e) pair should be linked together. 

3.2 Learning to Link with Wikipedia-like Databases 

We attempt to resolve the sense ambiguity of a given query term by learning link structure 
characteristics from a collection of <Term, Entity> pairs in a Wikipedia-like knowledge base. 
Our learning process is shown in Figure 3. 

 
Figure 3 Outline of the training process. 

3.2.1 Generate Candidate Term-Entity Pairs From Knowledge Base 

In the first stage of the learning process (Step (1) in Figure 3), we generate candidate 
<Term, Entity> pairs from KB. Once the candidate pairs have been computed and stored, the 
In-Page Search system could use them to efficiently retrieve possible entities of a given query, 
instead of comparing every e in KB. For example, given the query “ ”, we retrieve { <”

”, ” ”>, <” ”, ” ”>, <” ”, “ ( )”>, <” ”,”
”>}, and then, these four entities will be disambiguated. We compute these pairs from KB 

using a hyperlink’s anchor text and its destination entity. The rationale behind computing 
<Term, Entity> pairs using anchor texts is that anchor texts reflect how people mentioning 

(1) Generate  Candidate Term-Entity Pairs From Knowledge Base (Section 3.2.1) 

(2) Augment Knowledge Bases by Inter-Wiki Links (Section 3.2.2) 

(3) Train Binary SVM Classification Model (Section 3.2.3) 
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entities in written articles.  

The input to this stage is a set of Wikipedia-like knowledge base KB. With their 
hyperlinked nature, we could compute <Term, Entities> pairs easily. To provide broader 
coverage of query, we also take into account the redirect links and disambiguation pages.  

 

Figure 4. An input document from an Wikipedia-like knowledge base 

Table 1. Samples of <Term, Entity> pairs constructed from Figure 4. 

 The output of this stage is a collection of <Term, Entity> pairs of a certain knowledge 
base. Some <Term, Entity> pairs, automatically constructed, are shown in Table 1. Figure 5 
shows the algorithm for computing <Term, Entity> pairs from a Wikipedia-like database.  

 

Figure 5. Generating <Term, Entity> pairs. 

In Step (1) of the algorithm we retrieve the list of all articles in kb. Then we iterate through 
all articles. For each article, we first identify all hyperlinks and title of article (Steps (4), (5)). If 
this document is a disambiguation page, for each hyperlinks in this page, we add <document 

Term Entity 
NASDAQ  
LSE  
CNN  

 

Term Entity 
  

  
  

 

procedure GenerateTermEntityPairs(kb) 
(1)      docs = GetDocuments(kb) 
(2)      list = emptyList 
(3)      for each ei in docs 
(4)           links = GetLinks(ei) 
(5)           title = GetTitle(ei) 
(6)           if ei is Disambiguation Page 
(7)                 for each target in links 
(8)                      list += <title,target> 
(9)           else 
(10)            for each <anchor,target> in links 
(11)                 list += <anchor,target> 
(12)      hist=Histogram(list) 
(13)      return hist 
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title, link target> to a temp list. Otherwise we add <anchor text, link target> to the temp list 
(Steps (6)~(11)). Finally, we compute the histogram of the temp list, where every entry is a 
<Term, Entity> pair and its  frequency (Steps (12)). An example of results is shown in Table 2. 

Table 2. <Term, Entity> pairs of ‘ ’ 

Term Entity Frequency 
  ( ) 149 
  23 
  ( ) 1 
  1 

3.2.2 Augmenting Knowledge Base using Inter-Wiki Links 

In the second stage of the learning algorithm (Step (2) in Figure 3), we augment each 
Wikipedia-like knowledge base in KB using inter-wiki links. Consider Chinese Wikipedia and 
English Wikipedia, language links among them link two document describe the same entity 
together. For example, ” ” in Chinese Wikipedia and “Macintosh” in English 
Wikipedia. By linking one entity to its corresponding entity in other knowledge base, we could 
combine the knowledge to obtain a richer representation of information of each entity. For two 
imbalanced knowledge bases (e.g. Chinese Wikipedia and English Wikipedia), our algorithm 
could augment the one with less information using the one with more information.  

In a Wikipedia-like knowledge base, each article can be viewed as a concept (i.e. entity). 
From hyperlinks in documents, we could build a directed graph of the entire knowledge base, 
in which nodes denote articles, the edge indicate an article mentions another via hyperlinks. 
Thus, out-going edges of a node point to other articles mentioned in the article represented by 
the node, while in-coming edges of a node indicate other articles mentioning the node. We call 
these two edges out-links and in-links respectively (See Figure 6.).  

 

Figure 6. A link graph. Blue edges denote outlinks, green edges denote inlinks, orange edges 
denote both inlinks and outlinks. 

The input of this stage is two Wikipedia-like knowledge bases (e.g. <Chinese Wikipedia, 
English Wikipedia>, we augment the first knowledge base using the second one. The output of 
this stage is an augmented knowledge base, in which each document is augmented. 
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Figure 7. The augmentation process. 

Figure 7. shows the knowledge base augmenting process. In Step (1) of the algorithm, we 
retrieve the list of all articles in kbc. For each article, we first examine whether it has an 
inter-link points to its corresponding entity in kbe. If the result is negative, we leave the current 
article unchanged without augmentation. In Step (5), we identify the corresponding article in 
kbe by looking at the target, een of inter-wiki link of ecn. Then, we retrieve all out-links and 
in-links of een and carry out the CombineLinks procedure with both kinds of links (Step (6), (7), 
(8)). In the CombineLinks procedure, we iterate through all links in linken, and then determine 
if the link (i.e. lken) has an inter-link (Step (10)). If such an inter-link exists, we “translate” the 
link by replacing lken with lkcn, a hyperlink point to destination of the inter-link and has anchor 
text of destination title. Finally we add the translated link to the original set of link (i.e. linkcn), 
and store them in database. Note that the linken is also stored in kbc (Step (14)). We do that to 
support cross-lingual entity-linking. Once the augmentation has been done, each article in kbc 
has two link sets from each knowledge base. For articles with inter-links, the performance of 
entity-linking could be improved from the augmentation algorithm.  

3.2.3 Training the Binary SVM Model 

In the third and final stage of the learning process, we train a Link Similarity Model based on 
the link graph of Wikipedia-like knowledge base articles. To determine which entity to be 
linked given query term q, we compute link graph similarity between context c of q and 
candidate entities’ articles, and transform them to feature vectors to train a binary SVM 
classifier. In the rest of this section, we first explain the Link Similarity Model, which is used to 
estimate the similarity between two entities, and show how we incorporate the Link Similarity 
Model with SVM.  

Consider link graphs in Figure 6. We compute similarity between two link graphs which 

procedure AugmentKB(kbc, kbe) 
(1)      docs = GetDocuments(kbc) 
(2)      for each ecn in docs 
(3)          <olinkscn,ilinkscn> = <GetOLinks(ecn),GetILinks(ecn)> 
(4)           if InterlinkOf(ecn) exists: 
(5)               een=GetDocument(kbe,InterlinkOf(ecn)) 
(6)               <olinksen,ilinksen> = <GetOLinks(een),GetILinks(een)> 
(7)               CombineLinks(olinkscn,olinksen) 
(8)               CombineLinks(ilinkscn,ilinksen) 

procedure CombineLinks(linkcn,linken) 
(9)     for each lken in linken: 
(10)     if InterlinkOf(lken) exists: 
(11)           lkcn=translate(lken,InterlinkOf(lken)) 
(12)           linkcn+=lkcn 
(13)           linken-=lken 
(14) AddToKB(<linkcn, linken>) 
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has vertices va, vb as central node respectively using following equations:  

(1) 

In Eq. (1) Ea, Eb denote the edges of va, vb respectively. The interpretation of Eq. (1) is that 
we compute the number of edges in common with both vertices respectively, and normalize it 
using edges of smaller graph constructed from va and vb. In order to make range of Eq. (1) lies 
in [0, 1], we choose to normalize by smaller graph. Thus, bigger value means bigger similarity 
between two vertices.  

Given training data, we use Eq. (1) to compute features from training data and use them to 
train a binary SVM classifier. The procedure is shown in Figure 8. 

 
Figure 8. Training SVM Classifier. 

In Step (1) we retrieve a list of <Term, Article> pairs in which Term is an anchor text of 
randomly chosen hyperlink in Article, a randomly chosen article from kb. We treat Terms as 
query terms, and Articles as their contexts. Using <Term, Entity> pairs computed in 3.2.1, we 
can get candidates <Term, Entity> pairs (Step (3)). Then we iterate through them (Step (4)). In 
Step (5), for each <Term, Entity> pairs, we extract three features from them: 

lp: The link probability defined as P(Entity|Term), which could be easily computed since 
we have stored the histograms in 3.2.1. 

olinkSim: The link similarity considering only outlinks, i.e. Siml(article, entity). 

ilinkSim: Likewise, the link similarity by considering only inlinks. 

In the computation of link similarity, notice that since the knowledge base has been 
augmented in 3.2.2, each articles has two link sets. We utilize a set of constant coefficient <α1, 
α2, α3> to interpolate between similarity computed from <linken, linkcn, linkcn0>, where linkcn0 
is the unaugmented link set of kbcn. Finally we examine whether the target of term’s hyperlink 
equals entity, if the result is positive, we add the current feature vector to the input of SVM with 
positive example, otherwise with negative example (Steps (6)~(9)).  

procedure GenerateSVMInput(kb) 
(1) <Terms, Articles>= RandomTermArticles(kb) 
(2) for each <term, article> in <Terms, Articles>  
(3)     candidates = GetTermEntity(term) 
(4)     for each <term, entity> in candidates 
(5)          <lp, olinkSim, ilinkSim> =   extractFeatures(article, entity) 
(6)          if entity==TargetOf(term) 
(7)               AddToOutput(<1, lp, olinkSim, ilink>) 
(8)          else 
(9)               AddToOutput(<0, lp, olinkSim, ilink>) 
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3.3 Run-Time Entity Linking 

Once the SVM model is constructed, we are ready to classify or disambiguate query terms 
to corresponding entities in KB. We associate adequate entities with given query terms and 
context using the procedures in Figure 9. 

 

Figure 9. Classification algorithm at run-time. 

In Step (1) of ClassifyTerm procedure, we transform given context into an entity 
containing out-link set and in-link set, thus the link similarity measure could be applied. In 
TransformContext procedure, we first split the context into N-grams, and then do a longest 
possible match with the <Terms, Entity> pairs of kb computed in 3.2.1. For every N-gram there 
may be more than one matching <Term, Entity> pairs, we choose the one with highest 
frequency. Then we iterate through the matched terms (Step (2)), and then retrieve the 
corresponding entity (Step(3)), finally in Step (4) we make a union on the entity’s link sets with 
the output, ctxEntity’s link set, which is initialize as empty set.  

We now return to the ClassifyTerm procedure. Once we get the transformed context entity, 
in Step (2) we retrieve the candidates <Term, Entity> pairs where “Term” equals the query term 
q. For each entities in the candidate list, we compute feature vectors, where the first element is 
the link probability of current entity, the second and third elements are computed using eq. (1) 
with entity and context entity as input (Step (4)). After that we run the SVM model trained in 
3.2.3 to predict the results, if it is positive, we add this entity to the result candidates list, 
otherwise we continue the iteration. After the end of the iteration, we select the one with 
highest link probability as the result entity to be linked (Steps (9)~(12)). 

procedure ClassifyTerm(q, context, kb) 
(1) ctxEntity = transformContext(context, kb) 
(2) candidates = GetCandidateEntities(q) 
(3) for each entity in candidates 
(4)      feature = <LinkProb(entity), olinkSim(entity, 

ctxEntity), ilinkSim(entity, ctxEntity)> 
(5)      if SVMPredict(feature) is positive 
(6)           AddToResultCandidate(entity) 
(7)      else 
(8)           continue 
(9) if ResultCandidate is empty 
(10)       return “No entity could be linked” 
(11) else 
(12)       return MaxLinkProb(ResultCandidate) 
 
Procedure TransformContext(context, kb) 
(1) terms = LongestPossibleMostFrequentMatch(context, kb) 
(2) for each terms in terms: 
(3)      entity = GetEntity(term) 
(4)      CombineToCtxEntity(<olinks(entity), ilinks(entity)>) 
(5) return ctxEntity 
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4 Experimental Setting 

The proposed Link Similarity Model and knowledge base augmentation method was designed 
to resolve the sense ambiguity of given query terms and to leverage broader information from 
larger knowledge base. As such, our models will be trained on query terms and their target 
entities. In this thesis we treat hyperlinks and their destination in Wikipedia as query terms and 
target entities. Using such data, we  compiled datasets from Chinese Wikipedia for training and 
evaluation. In this chapter, we first present the training and test data for the evaluation (Section 
4.1). Then, Section 4.2 lists the methods we use in comparison. Section 4.3 introduces the 
evaluation metrics. Finally, we report the settings of the parameters in Section 4.4. 

4.1 Data Set 

In this thesis we focus on linking Chinese query terms to articles in Chinese Wikipedia. 
We used the Chinese Wikipedia XML file dumped at 20120503 as our main knowledge base. 
For the augmentation algorithm, we used 20120502 version of English Wikipedia to augment 
Chinese Wikipedia. Some statistics are shown in Table 3. Currently English Wikipedia is far 
more larger than Chinese Wikipedia, no matter in numbers of articles, numbers of 
language-links or average sense ambiguity. Notice that the sense ambiguity is lower in 
Chinese. To better investigate our algorithms, we compiled a collection of <hyperlink, article> 
pairs from Chinese Wikipedia with two criteria: 

1. The sense ambiguity of hyperlink’s anchor text (i.e. query terms) should not be too low or 
high. Lower ambiguity leads to easier datasets for our classifier, while extremely high 
value makes running time exponential longer, which is unacceptable for a real-time system. 
We set this value to lie in [2,7] in our experiment. 

2. The contexts (i.e. articles) where each hyperlink appeared should not be too lengthy. Our 
Link Similarity Model uses hyperlinks information in context. In Wikipedia some special 
pages such as Lists pages, which lists instances of entities, contain extremely many 
hyperlinks that introduce too much noise to our model. In our implementation we make a 
threshold on number of hyperlinks per article to lower than 50.  

Table 3. Statistics of Wikipedia 

 Chinese Wikipedia English Wikipedia 
Number of articles 482,095 4,485,110 
Percentage of language links 67% 9% 
Average sense ambiguity 3.1 6.7 

Using these criteria we randomly chosen 501 distinct <hyperlink, article> pairs from 
Chinese Wikipedia as our training data, and another distinct 2965 <hyperlink, article> pairs as 
testing data. 
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4.2 Methods Compared 

The proposed method starts with a query term and its textual context, and determines a suitable 
entity (i.e. article) for the query term in Chinese Wikipedia. The output of our system is the 
linked article from Chinese Wikipedia. 

In this thesis, we proposed a method for augmenting the smaller Wikipedia-like 
knowledge base (CN) using larger knowledge base (EN). In addition, we propose a model for 
computing link structure similarity between two hyperlinked articles, and then use it to train a 
SVM classifier, in which we use out-links (OL) and in-links (IL) as features. Further, the link 
probability (LP) is used as a feature to balance the system performance between rare and 
common entities. To inspect the effectiveness of the augmentation method and these modules 
in more detail, the baseline and the combinations of the three main modules, OL, IL, and LP, 
evaluated in our experiments are described as follows: 

� LP: We train the SVM model using only link probability, and we use this model as 
baseline. 

� OL+IL+LP (CN): The full model trained using out-links, in-links, and link 
probability without augmentation. 

� OL+IL+LP (CN+EN):  The most complete version of proposed system, using all 
features and augmentation process. 

� -LP (CN+EN): The full model with augmentation minus the link probability feature. 
� -OL (CN+EN): The full model with augmentation minus the out-links feature. 
� -IL (CN+EN): The full model with augmentation minus the in-links feature. 

4.3 Evaluation Results 

In this section, we report the evaluation results of the experiments on the methodology 
described in the previous chapter. Table 4. shows the results evaluated on the testing data 
consist of 2965 <query term, context>. 

Table 4. The evaluation results of different systems 

System Classifier 
accuracy 

Entity 
accuracy 

LP (Baseline) 95.87 90.54 
OL+IL+LP(CN) 97.49 92.81 
OL+IL+LP(CN+EN) 97.61 93.02 
-LP (CN+EN) 90.38 71.38 
-OL (CN+EN) 97.46 92.69 
-IL (CN+EN) 95.94 88.81 

As we can see, the full model (i.e. OL+IL+LP (CN+EN)) outperformed the strong 
baseline LP either on classifier accuracy or entity accuracy, which indicates that our 
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classification strategy can effectively return the most compatible entity to a given query term. 
As identified in previous related research (Milhacea et al., 2007; Milne et al., 2008), the 
baseline LP is extremely effective for determining suitable English Wikipedia articles for 
ambiguous query terms, in our experiment performed using Chinese Wikipedia, this is also the 
case.  

Comparing the two full models (i.e. OL+IL+LP), the results on CN and CN+EN indicate 
that our augmentation process provides a small performance improvement. Although the 
augmentation process does not greatly improve the performance, we perform 10-fold cross 
validation on another test set consisting of 3001 <hyperlink, article> pairs and found that the 
performance gain is statistically significant.  

In general, there is no significant difference between average number of in-links and 
out-links, so the number of links does not explain this phenomena. We suggest that in 
Wikipedia, in-links reflect topics that mention an entity, while out-links reflect context terms of 
a certain entity. Since topics are more stable than context term, the performance influenced by 
in-links are stronger.  

In sum, our model achieved impressive performance for linking query terms to articles in 
Chinese Wikipedia. The augmentation process further significantly improve performance.  

5 Conclusion and Future Works 

Many avenues exist for future research and improvement of our system. For example, more 
features used in training the classification models could be added to boost system performance. 
To improve our system, language features such as collocations, N-gram counts, or 
part-of-speech could be added. Additionally, an interesting direction to explore is to apply our 
model to cross-language entity-linking. To support cross-language entity-linking, we could 
also augment the <Term, Entity> pairs described in 3.2.1 using similar augmentation process. 
Once the augmentation has been done, we could cross-link a term to other knowledge base. For 
example, ” ” in Chinese Wikipedia may be linked to “Big Apple”, the nickname of New 
York city, in English Wikipedia.  

In summary, we have introduced a method for linking a <query term, context> pair to an 
appropriate article in Chinese Wikipedia. Our goal is to improve user experience so that the 
underlying search system could distinguish between different search intents based on the 
context. The method involves possible candidates construction, knowledge base augmentation 
via inter-links, computation of various link similarity measures, and multi-class classification 
using binary SVM classifier. We have implemented and thoroughly evaluated the method as 
applied to linking query terms to Chinese Wikipedia articles. In our evaluation, we have shown 

Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

304



 

14 
 

that the augmentation process slightly improved system performance. In addition, our full 
model significantly outperforms the strong baseline in terms of entity accuracy.  
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