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Abstract 

A wide range of supervised learning 
algorithms has been applied to Text 
Categorization. However, the supervised 
learning approaches have some problems. One 
of them is that they require a large, often 
prohibitive, number of labeled training 
documents for accurate learning. Generally, 
acquiring class labels for training data is costly, 
while gathering a large quantity of unlabeled 
data is cheap. We here propose a new 
automatic text categorization method for 
learning from only unlabeled data using a 
bootstrapping framework and a feature 
projection technique. From results of our 
experiments, our method showed reasonably 
comparable performance compared with a 
supervised method. If our method is used in a 
text categorization task, building text 
categorization systems will become 
significantly faster and less expensive. 

1 Introduction 

Text categorization is the task of classifying 
documents into a certain number of pre-defined 
categories. Many supervised learning algorithms 
have been applied to this area. These algorithms 
today are reasonably successful when provided 
with enough labeled or annotated training 
examples.  For example, there are Naive Bayes 
(McCallum and Nigam, 1998), Rocchio (Lewis et 
al., 1996), Nearest Neighbor (kNN) (Yang et al., 
2002), TCFP (Ko and Seo, 2002), and Support 
Vector Machine (SVM) (Joachims, 1998). 

However, the supervised learning approach has 
some difficulties. One key difficulty is that it 
requires a large, often prohibitive, number of 
labeled training data for accurate learning. Since a 
labeling task must be done manually, it is a 
painfully time-consuming process. Furthermore, 
since the application area of text categorization has 
diversified from newswire articles and web pages 
to E-mails and newsgroup postings, it is also a 
difficult task to create training data for each 

application area (Nigam et al., 1998). In this light, 
we consider learning algorithms that do not require 
such a large amount of labeled data. 

While labeled data are difficult to obtain, 
unlabeled data are readily available and plentiful. 
Therefore, this paper advocates using a 
bootstrapping framework and a feature projection 
technique with just unlabeled data for text 
categorization. The input to the bootstrapping 
process is a large amount of unlabeled data and a 
small amount of seed information to tell the learner 
about the specific task. In this paper, we consider 
seed information in the form of title words 
associated with categories. In general, since 
unlabeled data are much less expensive and easier 
to collect than labeled data, our method is useful 
for text categorization tasks including online data 
sources such as web pages, E-mails, and 
newsgroup postings.  

To automatically build up a text classifier with 
unlabeled data, we must solve two problems; how 
we can automatically generate labeled training 
documents (machine-labeled data) from only title 
words and how we can handle incorrectly labeled 
documents in the machine-labeled data. This paper 
provides solutions for these problems. For the first 
problem, we employ the bootstrapping framework. 
For the second, we use the TCFP classifier with 
robustness from noisy data (Ko and Seo, 2004). 

How can labeled training data be automatically 
created from unlabeled data and title words? 
Maybe unlabeled data don’t have any information 
for building a text classifier because they do not 
contain the most important information, their 
category. Thus we must assign the class to each 
document in order to use supervised learning 
approaches. Since text categorization is a task 
based on pre-defined categories, we know the 
categories for classifying documents. Knowing the 
categories means that we can choose at least a 
representative title word of each category. This is 
the starting point of our proposed method. As we 
carry out a bootstrapping task from these title 
words, we can finally get labeled training data. 
Suppose, for example, that we are interested in 
classifying newsgroup postings about specially 



‘Autos’ category. Above all, we can select 
‘automobile’ as a title word, and automatically 
extract keywords (‘car’, ‘gear’, ‘transmission’, 
‘sedan’, and so on) using co-occurrence 
information. In our method, we use context (a 
sequence of 60 words) as a unit of meaning for 
bootstrapping from title words; it is generally 
constructed as a middle size of a sentence and a 
document. We then extract core contexts that 
include at least one of the title words and the 
keywords. We call them centroid-contexts because 
they are regarded as contexts with the core 
meaning of each category. From the centroid-
contexts, we can gain many words contextually co-
occurred with the title words and keywords: 
‘driver’, ‘clutch’, ‘trunk’, and so on. They are 
words in first-order co-occurrence with the title 
words and the keywords. To gather more 
vocabulary, we extract contexts that are similar to 
centroid-contexts by a similarity measure; they 
contain words in second-order co-occurrence with 
the title words and the keywords. We finally 
construct context-cluster of each category as the 
combination of centroid-contexts and contexts 
selected by the similarity measure. Using the 
context-clusters as labeled training data, a Naive 
Bayes classifier can be built. Since the Naive 
Bayes classifier can label all unlabeled documents 
for their category, we can finally obtain labeled 
training data (machine-labeled data).  

When the machine-labeled data is used to learn a 
text classifier, there is another difficult in that they 
have more incorrectly labeled documents than 
manually labeled data. Thus we develop and 
employ the TCFP classifiers with robustness from 
noisy data. 

The rest of this paper is organized as follows. 
Section 2 reviews previous works. In section 3 and 
4, we explain the proposed method in detail. 
Section 5 is devoted to the analysis of the 
empirical results. The final section describes 
conclusions and future works. 

 

2 Related Works 

In general, related approaches for using unlabeled 
data in text categorization have two directions; 
One builds classifiers from a combination of 
labeled and unlabeled data (Nigam, 2001; Bennett 
and Demiriz, 1999), and the other employs 
clustering algorithms for text categorization 
(Slonim et al., 2002). 

Nigam studied an Expected Maximization (EM) 
technique for combining labeled and unlabeled 
data for text categorization in his dissertation. He 
showed that the accuracy of learned text classifiers 
can be improved by augmenting a small number of 

labeled training data with a large pool of unlabeled 
data.  

Bennet and Demiriz achieved small 
improvements on some UCI data sets using SVM. 
It seems that SVMs assume that decision 
boundaries lie between classes in low-density 
regions of instance space, and the unlabeled 
examples help find these areas. 

Slonim suggested clustering techniques for 
unsupervised document classification. Given a 
collection of unlabeled data, he attempted to find 
clusters that are highly correlated with the true 
topics of documents by unsupervised clustering 
methods. In his paper, Slonim proposed a new 
clustering method, the sequential Information 
Bottleneck (sIB) algorithm. 

 

3 The Bootstrapping Algorithm for Creating 
Machine-labeled Data 

The bootstrapping framework described in this 
paper consists of the following steps. Each module 
is described in the following sections in detail. 
 

1. Preprocessing: Contexts are separated from 
unlabeled documents and content words are 
extracted from them. 

2. Constructing context-clusters for training: 
- Keywords of each category are created 
- Centroid-contexts are extracted and verified 
- Context-clusters are created by a similarity  

measure 
3. Learning Classifier: Naive Bayes classifier are 

learned by using the context-clusters 
 

3.1 Preprocessing 

The preprocessing module has two main roles: 
extracting content words and reconstructing the 
collected documents into contexts. We use the Brill 
POS tagger to extract content words (Brill, 1995).  

Generally, the supervised learning approach with 
labeled data regards a document as a unit of 
meaning. But since we can use only the title words 
and unlabeled data, we define context as a unit of 
meaning and we employ it as the meaning unit to 
bootstrap the meaning of each category. In our 
system, we regard a sequence of 60 content words 
within a document as a context. To extract contexts 
from a document, we use sliding window 
techniques (Maarek et al., 1991). The window is a 
slide from the first word of the document to the last 
in the size of the window (60 words) and the 
interval of each window (30 words). Therefore, the 
final output of preprocessing is a set of context 
vectors that are represented as content words of 
each context. 

 



3.2 Constructing Context-Clusters for 
Training 

At first, we automatically create keywords from a 
title word for each category using co-occurrence 
information. Then centroid-contexts are extracted 
using the title word and keywords. They contain at 
least one of the title and keywords. Finally, we can 
gain more information of each category by 
assigning remaining contexts to each context-
cluster using a similarity measure technique; the 
remaining contexts do not contain any keywords or 
title words. 

3.2.1 Creating Keyword Lists 
The starting point of our method is that we have 
title words and collected documents. A title word 
can present the main meaning of each category but 
it could be insufficient in representing any 
category for text categorization. Thus we need to 
find words that are semantically related to a title 
word, and we define them as keywords of each 
category. 

The score of semantic similarity between a title 
word, T, and a word, W, is calculated by the cosine 
metric as follows: 
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where ti and wi represent the occurrence (binary 
value: 0 or 1) of words T and W in i-th document 
respectively, and n is the total number of 
documents in the collected documents. This 
method calculates the similarity score between 
words based on the degree of their co-occurrence 
in the same document.  

Since the keywords for text categorization must 
have the power to discriminate categories as well 
as similarity with the title words, we assign a word 
to the keyword list of a category with the 
maximum similarity score and recalculate the score 
of the word in the category using the following 
formula: 
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where Tmax is the title word with the maximum 
similarity score with a word W, cmax is the category 
of the title word Tmax, and Tsecondmax is other title 
word with the second high similarity score with the 
word W. 

This formula means that a word with high 
ranking in a category has a high similarity score 
with the title word of the category and a high 
similarity score difference with other title words. 

We sort out words assigned to each category 
according to the calculated score in descending 
order. We then choose top m words as keywords in 
the category. Table 1 shows the list of keywords 
(top 5) for each category in the WebKB data set. 

 
Table 1. The list of keywords in the WebKB data set 
Category Title Word Keywords 

course course assignments, hours, instructor, 
class, fall 

faculty professor associate, ph.d, fax, interests, 
publications 

project project system, systems, research, 
software, information 

student student graduate, computer, science, 
page, university 

 

3.2.2 Extracting and Verifying Centroid-Contexts 
We choose contexts with a keyword or a title word 
of a category as centroid-contexts. Among 
centroid-contexts, some contexts could not have 
good features of a category even though they 
include the keywords of the category. To rank the 
importance of centroid-contexts, we compute the 
importance score of each centroid-context. First of 
all, weights (Wij) of word wi in j-th category are 
calculated using Term Frequency (TF) within a 
category and Inverse Category Frequency (ICF) 
(Cho and Kim, 1997) as follows:  
 

))log()(log( iijiijij CFMTFICFTFW −×=×=     (3) 
 
where CFi is the number of categories that contain 
wi and M is the total number of categories. 

Using word weights (Wij) calculated by formula 
3, the score of a centroid-context (Sk) in j-th 
category (cj) is computed as follows: 
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where N is the  number of words in the centroid-
context. 

As a result, we obtain a set of words in first-
order co-occurrence from centroid-contexts of each 
category. 

3.2.3 Creating Context-Clusters 
We gather the second-order co-occurrence 
information by assigning remaining contexts to the 
context-cluster of each category. For the assigning 
criterion, we calculate similarity between 
remaining contexts and centroid-contexts of each 
category. Thus we employ the similarity measure 
technique by Karov and Edelman (1998). In our 
method, a part of this technique is reformed for our 



purpose and remaining contexts are assigned to 
each context-cluster by that revised technique. 
 
1) Measurement of word and context similarities 
As similar words tend to appear in similar contexts, 
we can compute the similarity by using contextual 
information. Words and contexts play 
complementary roles. Contexts are similar to the 
extent that they contain similar words, and words 
are similar to the extent that they appear in similar 
contexts (Karov and Edelman, 1998). This 
definition is circular. Thus it is applied iteratively 
using two matrices, WSM and CSM. 

Each category has a word similarity matrix 
WSMn and a context similarity matrix CSMn. In 
each iteration n, we update WSMn, whose rows and 
columns are labeled by all content words 
encountered in the centroid-contexts of each 
category and input remaining contexts. In that 
matrix, the cell (i,j) holds a value between 0 and 1, 
indicating the extent to which the i-th word is 
contextually similar to the j-th word. Also, we keep 
and update a CSMn, which holds similarities 
among contexts. The rows of CSMn correspond to 
the remaining contexts and the columns to the 
centroid-contexts. In this paper, the number of 
input contexts of row and column in CSM is 
limited to 200, considering execution time and 
memory allocation, and the number of iterations is 
set as 3.  

To compute the similarities, we initialize WSMn 
to the identity matrix. The following steps are 
iterated until the changes in the similarity values 
are small enough. 

1. Update the context similarity matrix CSMn, 
using the word similarity matrix WSMn. 

2. Update the word similarity matrix WSMn, using the 
context similarity matrix CSMn. 

2) Affinity formulae 
To simplify the symmetric iterative treatment of 
similarity between words and contexts, we define 
an auxiliary relation between words and contexts 
as affinity.  

Affinity formulae are defined as follows (Karov 
and Edelman, 1998): 
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In the above formulae, n denotes the iteration 
number, and the similarity values are defined by 
WSMn and CSMn. Every word has some affinity to 
the context, and the context can be represented by 
a vector indicating the affinity of each word to it. 
 

3) Similarity formulae 
The similarity of W1 to W2 is the average affinity of 
the contexts that include W1 to W2, and the 
similarity of a context X1 to X2 is a weighted 
average of the affinity of the words in X1 to X2. 
Similarity formulae are defined as follows: 
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The weights in formula 7 are computed as 
reflecting global frequency, log-likelihood factors, 
and part of speech as used in (Karov and Edelman, 
1998). The sum of weights in formula 8, which is a 
reciprocal number of contexts that contain W1, is 1. 
 
4) Assigning remaining contexts to a category 
We decided a similarity value of each remaining 
context for each category using the following 
method: 
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In formula 9, i) X is a remaining context, ii) 

{ }mcccC ,...,, 21= is a category set, and iii) { }nc SS
i

,...,1=CC is 
a controid-contexts set of category ci. 

Each remaining context is assigned to a category 
which has a maximum similarity value. But there 
may exist noisy remaining contexts which do not 
belong to any category. To remove these noisy 
remaining contexts, we set up a dropping threshold 
using normal distribution of similarity values as 
follows (Ko and Seo, 2000): 
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where i) X is a remaining context, ii) µ is an 
average of similarity values , iii) σ is a 

standard deviation of similarity values, and iv) θ is 
a numerical value corresponding to the threshold 
(%) in normal distribution table.  

),( iCc
cXsim
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Finally, a remaining context is assigned to the 
context-cluster of any category when the category 
has a maximum similarity above the dropping 
threshold value. In this paper, we empirically use a 
15% threshold value from an experiment using a 
validation set. 



3.3 Learning the Naive Bayes Classifier Using 
Context-Clusters 

In above section, we obtained labeled training data: 
context-clusters. Since training data are labeled as 
the context unit, we employ a Naive Bayes 
classifier because it can be built by estimating the 
word probability in a category, but not in a 
document. That is, the Naive Bayes classifier does 
not require labeled data with the unit of documents 
unlike other classifiers.  

We use the Naive Bayes classifier with minor 
modifications based on Kullback-Leibler 
Divergence (Craven et al., 2000). We classify a 
document di according to the following formula: 
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where i) n is the number of words in document di, 
ii) wt is the t-th word in the vocabulary, iii) N(wt,di) 
is the frequency of word wt in document di. 

Here, the Laplace smoothing is used to estimate 
the probability of word wt in class cj and the 
probability of class cj as follows: 
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where  is the count of the number of times 
word w

),(
jct GwN
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jcG
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4 Using a Feature Projection Technique for 
Handling Noisy Data of Machine-labeled 
Data 

We finally obtained labeled data of a documents 
unit, machine-labeled data. Now we can learn text 
classifiers using them. But since the machine-
labeled data are created by our method, they 
generally include far more incorrectly labeled 
documents than the human-labeled data. Thus we 
employ a feature projection technique for our 
method. By the property of the feature projection 
technique, a classifier (the TCFP classifier) can 
have robustness from noisy data (Ko and Seo, 
2004). As seen in our experiment results, TCFP 
showed the highest performance among 

conventional classifiers in using machine-labeled 
data. 
 
The TCFP classifier with robustness from noisy 
data 

Here, we simply describe the TCFP classifier using 
the feature projection technique (Ko and Seo, 
2002; 2004). In this approach, the classification 
knowledge is represented as sets of projections of 
training data on each feature dimension. The 
classification of a test document is based on the 
voting of each feature of that test document. That 
is, the final prediction score is calculated by 
accumulating the voting scores of all features.  

First of all, we must calculate the voting ratio of 
each category for all features. Since elements with 
a high TF-IDF value in projections of a feature 
must become more useful classification criteria for 
the feature, we use only elements with TF-IDF 
values above the average TF-IDF value for voting. 
And the selected elements participate in 
proportional voting with the same importance as 
the TF-IDF value of each element. The voting ratio 
of each category cj in a feature tm is calculated by 
the following formula: 
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In formula 14, w ),( dtm
r

is the weight of term tm in 
document d, Im denotes a set of elements selected 
for voting and  is a function; if the 
category for an element t  is equal to c , the 
output value is 1. Otherwise, the output value is 0.  
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Next, since each feature separately votes on 
feature projections, contextual information is 
missing. Thus we calculate co-occurrence 
frequency of features in the training data and 
modify TF-IDF values of two terms ti and tj in a 
test document by co-occurrence frequency between 
them; terms with a high co-occurrence frequency 
value have higher term weights.  

Finally, the voting score of each category c in 
the m-th feature t

j

m of a test document d is 
calculated by the following formula: 
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where tw(tm,d) denotes a modified term weight by 
the co-occurrence frequency and denotes 
the calculated χ
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Table 2. The top micro-avg F1 scores and  precision-recall breakeven points of each method.  
 OurMethod 

(basis) 
OurMethod

(NB) 
OurMethod
(Rocchio) 

OurMethod
(kNN) 

OurMethod 
(SVM) 

OurMethod
(TCFP) 

Newsgroups 79.36 83.46 83 79.95 82.49 86.19 
WebKB 73.63 73.22 75.28 68.04 73.74 75.47 
Reuters 88.62 88.23 86.26 85.65 87.41 89.09 

 

The outline of the TCFP classifier is as follow: 
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across categories, we used the micro-averaging 
method (Yang et al., 2002). Results on Reuters are 
reported as precision-recall breakeven points, 
which is a standard information retrieval measure 
for binary classification (Joachims, 1998). 

Title words in our experiment are selected 
according to category names of each data set (see 
Table 1 as an example). 

5.2 Experimental Results 
1. input : test document: d
r

 =<t1,t2,…,tn> 
2. main process 

For each feature ti 
           tw(ti,d) is calculated  

 

For each feature ti 
          For each category cj 
                vote[cj]=vote[cj]+vs(cj,ti) by Formula 15

 

prediction = ][maxarg jcvote  
Empirical Evaluation 

 Data Sets and Experimental Settings 

 test our method, we used three different kinds 
data sets: UseNet newsgroups (20 Newsgroups), 
b pages (WebKB), and newswire articles 
uters 21578). For fair evaluation in 

wsgroups and WebKB, we employed the five-
d cross-validation method. 
he Newsgroups data set, collected by Ken 

ng, contains about 20,000 articles evenly 
ided among 20 UseNet discussion groups 
cCallum and Nigam, 1998). In this paper, we 
d only 16 categories after removing 4 
egories: three miscellaneous categories 
lk.politics.misc, talk.religion.misc, and 

p.os.ms-windows.misc) and one duplicate 
aning category (comp.sys. ibm.pc.hardware).  
he second data set comes from the WebKB 

ject at CMU (Craven et al., 2000). This data set 
tains web pages gathered from university 
puter science departments.  
he Reuters 21578 Distribution 1.0 data set 
sists of 12,902 articles and 90 topic categories 

m the Reuters newswire. Like other study in 
igam, 2001), we used the ten most populous 
egories to identify the news topic.  

bout 25% documents from training data of 
h data set are selected for a validation set. We 
lied a statistical feature selection method (χ2 

tistics) to a preprocessing stage for each 
ssifier (Yang and Pedersen, 1997). 
s performance measures, we followed the 

ndard definition of recall, precision, and F1 
asure. For evaluation performance average 

c j 5.2.1 Observing the Performance According to 
the Number of Keywords 

First of all, we determine the number of keywords 
in our method using the validation set.  The 
number of keywords is limited by the top m-th 
keyword from the ordered list of each category. 
Figure 1 displays the performance at different 
number of keywords (from 0 to 20) in each data set. 
 

40

45

50

55

60

65

70

75

80

85

0 1 2 3 4 5 8 10 13 15 18 20

The number of keywords

M
ic

ro
-
a
vg

. 
F
1

Newsgroups WebKB Reuters 

 
Figure 1. The comparison of performance according to 

the number of keywords 
 
We set the number of keywords to 2 in 

Newsgroups, 5 in WebKB, and 3 in Reuters 
empirically. Generally, we recommend that the 
number of keywords be between 2 and 5. 

5.2.2 Comparing our Method Using TCFP with 
those Using other Classifiers 

In this section, we prove the superiority of TCFP 
over the other classifiers (SVM, kNN, Naive Bayes 
(NB), Roccio) in training data with much noisy 
data such as machine-labeled data. As shown in 
Table 2, we obtained the best performance in using 
TCFP at all three data sets.  

Let us define the notations. OurMethod(basis) 
denotes the Naive Bayes classifier using labeled 
contexts and OurMethod(NB) denotes the Naive 
Bayes classifier using machine-labeled data as 



training data. The same manner is applied for other 
classifiers. 

OurMethod(TCFP) achieved more advanced 
scores than OurMethod(basis): 6.83 in 
Newsgroups, 1.84 in WebKB, and  0.47 in Reuters. 

5.2.3 Comparing with the Supervised Naive 
Bayes Classifier 

For this experiment, we consider two possible 
cases for labeling task. The first task is to label a 
part of collected documents and the second is to 
label all of them. As the first task, we built up a 
new training data set; it consists of 500 different 
documents randomly chosen from appropriate 
categories like the experiment in (Slonim et al., 
2002). As a result, we report performances from 
two kinds of Naive Bayes classifiers which are 
learned from 500 training documents and the 
whole training documents respectively. 
 

Table 3. The comparison of our method and the 
supervised NB classifier 

 OurMethod 
(TCFP) 

NB 
(500) 

NB 
(All) 

Newsgroups 86.19 72.68 91.72 
WebKB 75.47 74.1 85.29 
Reuters 89.09 82.1 91.64 

 
In Table 3, the results of our method are higher 

than those of NB(500) and are comparable to those 
of NB(All) in all data sets. Especially, the result in 
Reuters reached 2.55 close to that of NB(All) 
though it used the whole labeled training data. 

5.2.4 Enhancing our Method from Choosing 
Keywords by Human 

The main problem of our method is that the 
performance depends on the quality of the 
keywords and title words. As we have seen in 
Table 3, we obtained the worst performance in the 
WebKB data set. In fact, title words and keywords 
of each category in the WebKB data set also have 
high frequency in other categories. We think these 
factors contribute to a comparatively poor 
performance of our method. If keywords as well as 
title words are supplied by humans, our method 
may achieve higher performance. However, 
choosing the proper keywords for each category is 
a much difficult task. Moreover, keywords from 
developers, who have insufficient knowledge about 
an application domain, do not guarantee high 
performance. In order to overcome this problem, 
we propose a hybrid method for choosing 
keywords. That is, a developer obtains 10 
candidate keywords from our keyword extraction 
method and then they can choose proper keywords 
from them. Table 4 shows the results from three 
data sets. 

Table 4. The comparison of our method and enhancing 
method 

 OurMethod 
(TCFP) 

Enhancing 
(TCFP)) Improvement

Newsgroups 86.19 86.23 +0.04 
WebKB 75.47 77.59 +2.12 
Reuters 89.09 89.52 +0.43 

 
As shown in Table 4, especially we could achieve 
significant improvement in the WebKb data set. 
Thus we find that the new method for choosing 
keywords is more useful in a domain with 
confused keywords between categories such as the 
WebKB data set. 

5.2.5 Comparing with a Clustering Technique 
In related works, we presented two approaches 
using unlabeled data in text categorization; one 
approach combines unlabeled data and labeled data, 
and the other approach uses the clustering 
technique for text categorization. Since our method 
does not use any labeled data, it cannot be fairly 
compared with the former approaches. Therefore, 
we compare our method with a clustering 
technique. Slonim et al. (2002) proposed a new 
clustering algorithm (sIB) for unsupervised 
document classification and verified the superiority 
of his algorithm. In his experiments, the sIB 
algorithm was superior to other clustering 
algorithms. As we set the same experimental 
settings as in Slonim’s experiments and conduct 
experiments, we verify that our method 
outperforms ths sIB algorithm. In our experiments, 
we used the micro-averaging precision as 
performance measure and two revised data sets: 
revised_NG, revised_Reuters. These data sets were 
revised in the same way according to Slonim’s 
paper as follows:  

In revised_NG, the categories of Newsgroups were 
united with respect to 10 meta-categories: five comp 
categories, three politics categories, two sports 
categories, three religions categories, and two 
transportation categories into five big meta-
categories.  

The revised_Reuters used the 10 most frequent 
categories in the Reuters 21578 corpus under the 
ModApte split.  

As shown in Table 5, our method shows 6.65 
advanced score in revised_NG and 3.2 advanced 
score in revised_Reuters. 
 

Table 5. The comparison of our method and sIB 
 sIB OurMethod 

(TCFP) Improvement

revised_NG 79.5 86.15 +6.65 
revised_Reuters 85.8 89 +3.2 



6 Conclusions and Future Works 

This paper has addressed a new unsupervised or 
semi-unsupervised text categorization method. 
Though our method uses only title words and 
unlabeled data, it shows reasonably comparable 
performance in comparison with that of the 
supervised Naive Bayes classifier. Moreover, it 
outperforms a clustering method, sIB. Labeled data 
are expensive while unlabeled data are inexpensive 
and plentiful. Therefore, our method is useful for 
low-cost text categorization. Furthermore, if some 
text categorization tasks require high accuracy, our 
method can be used as an assistant tool for easily 
creating labeled training data.  

Since our method depends on title words and 
keywords, we need additional studies about the 
characteristics of candidate words for title words 
and keywords according to each data set. 
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