
Enriching the Output of a Parser Using Memory-Based Learning

Valentin Jijkoun and Maarten de Rijke
Informatics Institute, University of Amsterdam�

jijkoun, mdr � @science.uva.nl

Abstract

We describe a method for enriching the output of a
parser with information available in a corpus. The
method is based on graph rewriting using memory-
based learning, applied to dependency structures.
This general framework allows us to accurately re-
cover both grammatical and semantic information
as well as non-local dependencies. It also facili-
tates dependency-based evaluation of phrase struc-
ture parsers. Our method is largely independent of
the choice of parser and corpus, and shows state of
the art performance.

1 Introduction

We describe a method to automatically enrich the
output of parsers with information that is present
in existing treebanks but usually not produced by
the parsers themselves. Our motivation is two-fold.
First and most important, for applications requiring
information extraction or semantic interpretation of
text, it is desirable to have parsers produce gram-
matically and semantically rich output. Second, to
facilitate dependency-based comparison and evalu-
ation of different parsers, their outputs may need to
be transformed into specific rich dependency for-
malisms.

The method allows us to automatically trans-
form the output of a parser into structures as they
are annotated in a dependency treebank. For a
phrase structure parser, we first convert the pro-
duced phrase structures into dependency graphs
in a straightforward way, and then apply a se-
quence of graph transformations: changing depen-
dency labels, adding new nodes, and adding new
dependencies. A memory-based learner trained
on a dependency corpus is used to detect which
modifications should be performed. For a depen-
dency corpus derived from the Penn Treebank and
the parsers we considered, these transformations
correspond to adding Penn functional tags (e.g.,
-SBJ, -TMP, -LOC), empty nodes (e.g., NP PRO)
and non-local dependencies (controlled traces, WH-

extraction, etc.). For these specific sub-tasks our
method achieves state of the art performance. The
evaluation of the transformed output of the parsers
of Charniak (2000) and Collins (1999) gives 90%
unlabelled and 84% labelled accuracy with respect
to dependencies, when measured against a depen-
dency corpus derived from the Penn Treebank.

The paper is organized as follows. After provid-
ing some background and motivation in Section 2,
we give the general overview of our method in Sec-
tion 3. In Sections 4 through 8, we describe all
stages of the transformation process, providing eval-
uation results and comparing our methods to earlier
work. We discuss the results in Section 9.

2 Background and Motivation

State of the art statistical parsers, e.g., parsers
trained on the Penn Treebank, produce syntactic
parse trees with bare phrase labels, such as NP, PP,
S, although the training corpora are usually much
richer and often contain additional grammatical and
semantic information (distinguishing various modi-
fiers, complements, subjects, objects, etc.), includ-
ing non-local dependencies, i.e., relations between
phrases not adjacent in the parse tree. While this in-
formation may be explicitly annotated in a treebank,
it is rarely used or delivered by parsers.1 The rea-
son is that bringing in more information of this type
usually makes the underlying parsing model more
complicated: more parameters need to be estimated
and independence assumptions may no longer hold.
Klein and Manning (2003), for example, mention
that using functional tags of the Penn Treebank
(temporal, location, subject, predicate, etc.) with a
simple unlexicalized PCFG generally had a negative
effect on the parser’s performance. Currently, there
are no parsers trained on the Penn Treebank that use
the structure of the treebank in full and that are thus

1Some notable exceptions are the CCG parser described in
(Hockenmaier, 2003), which incorporates non-local dependen-
cies into the parser’s statistical model, and the parser of Collins
(1999), which uses WH traces and argument/modifier distinc-
tions.

capable of producing syntactic structures containing
all or nearly all of the information annotated in the
corpus.

In recent years there has been a growing inter-
est in getting more information from parsers than
just bare phrase trees. Blaheta and Charniak (2000)
presented the first method for assigning Penn func-
tional tags to constituents identified by a parser.
Pattern-matching approaches were used in (John-
son, 2002) and (Jijkoun, 2003) to recover non-local
dependencies in phrase trees. Furthermore, experi-
ments described in (Dienes and Dubey, 2003) show
that the latter task can be successfully addressed by
shallow preprocessing methods.

3 An Overview of the Method
In this section we give a high-level overview of our
method for transforming a parser’s output and de-
scribe the different steps of the process. In the ex-
periments we used the parsers described in (Char-
niak, 2000) and (Collins, 1999). For Collins’ parser
the text was first POS-tagged using Ratnaparkhi’s
maximum enthropy tagger.

The training phase of the method consists in
learning which transformations need to be applied
to the output of a parser to make it as similar to the
treebank data as possible.

As a preliminary step (Step 0), we convert the
WSJ2 to a dependency corpus without losing the an-
notated information (functional tags, empty nodes,
non-local dependencies). The same conversion is
applied to the output of the parsers we consider. The
details of the conversion process are described in
Section 4 below.

The training then proceeds by comparing graphs
derived from a parser’s output with the graphs
from the dependency corpus, detecting various mis-
matches, such as incorrect arc labels and missing
nodes or arcs. Then the following steps are taken to
fix the mismatches:

Step 1: changing arc labels

Step 2: adding new nodes

Step 3: adding new arcs

Obviously, other modifications are possible, such
as deleting arcs or moving arcs from one node to
another. We leave these for future work, though,
and focus on the three transformations mentioned
above.

The dependency corpus was split into training
(WSJ sections 02–21), development (sections 00–

2Thoughout the paper WSJ refers to the Penn Treebank II
Wall Street Journal corpus.

01) and test (section 23) corpora. For each of the
steps 1, 2 and 3 we proceed as follows:

1. compare the training corpus to the output of the
parser on the strings of the corpus, after apply-
ing the transformations of the previous steps

2. identify possible beneficial transformations
(which arc labels need to be changed or where
new nodes or arcs need to be added)

3. train a memory-based classifier to predict pos-
sible transformations given their context (i.e.,
information about the local structure of the
dependency graph around possible application
sites).

While the definitions of the context and application
site and the graph modifications are different for the
three steps, the general structure of the method re-
mains the same at each stage. Sections 6, 7 and 8
describe the steps in detail.

In the application phase of the method, we pro-
ceed similarly. First, the output of the parser is con-
verted to dependency graphs, and then the learners
trained during the steps 1, 2 and 3 are applied in
sequence to perform the graph transformations.

Apart from the conversion from phrase structures
to dependency graphs and the extraction of some
linguistic features for the learning, our method does
not use any information about the details of the tree-
bank annotation or the parser’s output: it works with
arbitrary labelled directed graphs.

4 Step 0: From Constituents to
Dependencies

To convert phrase trees to dependency structures,
we followed the commonly used scheme (Collins,
1999). The conversion routine,3 described below, is
applied both to the original WSJ structures and the
output of the parsers, though the former provides
more information (e.g., traces) which is used by the
conversion routine if available.

First, for the treebank data, all traces are resolved
and corresponding empty nodes are replaced with
links to target constituents, so that syntactic trees
become directed acyclic graphs. Second, for each
constituent we detect its head daughters (more than
one in the case of conjunction) and identify lexical
heads. Then, for each constituent we output new
dependencies between its lexical head and the lex-
ical heads of its non-head daughters. The label of
every new dependency is the constituent’s phrase

3Our converter is available at http://www.science.
uva.nl/˜jijkoun/software.

(a)

S

NP−SBJ VP

to seek NP

seats

*−1

directors

NP−SBJ−1

this month

NP−TMP

VP

planned

S

(b)

VP

to seek NP

seats

VP

planned

S

directors

this month

 NP

 NP S

(c)

planned

directors

VP|S

S|NP−SBJ

to

seek

seats
VP|NP

month

 this

VP|TO

S|NP−TMP

NP|DT

S|NP−SBJ

(d)

planned

directors

VP|S
S|NP

to

seek

seats
VP|NP

month

 this

VP|TO

S|NP

NP|DT

Figure 1: Example of (a) the Penn Treebank WSJ annotation, (b) the output of Charniak’s parser, and the
results of the conversion to dependency structures of (c) the Penn tree and of (d) the parser’s output

label, stripped of all functional tags and coindex-
ing marks, conjoined with the label of the non-head
daughter, with its functional tags but without coin-
dexing marks. Figure 1 shows an example of the
original Penn annotation (a), the output of Char-
niak’s parser (b) and the results of our conversion of
these trees to dependency structures (c and d). The
interpretation of the dependency labels is straight-
forward: e.g., the label S � NP-TMP corresponds to
a sentence (S) being modified by a temporal noun
phrase (NP-TMP).

The core of the conversion routine is the selection
of head daughters of the constituents. Following
(Collins, 1999), we used a head table, but extended
it with a set of additional rules, based on constituent
labels, POS tags or, sometimes actual words, to ac-
count for situations where the head table alone gave
unsatisfactory results. The most notable extension
is our handling of conjunctions, which are often left
relatively flat in WSJ and, as a result, in a parser’s
output: we used simple pattern-based heuristics to
detect conjuncts and mark all conjuncts as heads of
a conjunction.

After the conversion, every resulting dependency
structure is modified deterministically:

� auxiliary verbs (be, do, have) become depen-
dents of corresponding main verbs (similar to
modal verbs, which are handled by the head ta-
ble);

� to fix a WSJ inconsistency, we move the -LGS
tag (indicating logical subject of passive in a
by-phrase) from the PP to its child NP.

5 Dependency-based Evaluation of
Parsers

After the original WSJ structures and the parsers’
outputs have been converted to dependency struc-
tures, we evaluate the performance of the parsers
against the dependency corpus. We use the standard
precision/recall measures over sets of dependencies
(excluding punctuation marks, as usual) and evalu-
ate Collins’ and Charniak’s parsers on WSJ section
23 in three settings:

� on unlabelled dependencies;

� on labelled dependencies with only bare labels
(all functional tags discarded);

� on labelled dependencies with functional tags.

Notice that since neither Collins’ nor Charniak’s
parser outputs WSJ functional labels, all dependen-
cies with functional labels in the gold parse will be
judged incorrect in the third setting. The evaluation
results are shown in Table 1, in the row “step 0”.4

As explained above, the low numbers for the de-
pendency evaluation with functional tags are ex-
pected, because the two parsers were not intended
to produce functional labels.

Interestingly, the ranking of the two parsers is
different for the dependency-based evaluation than
for PARSEVAL: Charniak’s parser obtains a higher
PARSEVAL score than Collins’ (89.0% vs. 88.2%),

4For meaningful comparison, the Collins’ tags -A and -g
are removed in this evaluation.

Evaluation Parser
unlabelled labelled with func. tags

P R f P R f P R f
after conversion Charniak 89.9 83.9 86.8 85.9 80.1 82.9 68.0 63.5 65.7

(step 0, Section 4) Collins 90.4 83.7 87.0 86.7 80.3 83.4 68.4 63.4 65.8
after relabelling Charniak 89.9 83.9 86.8 86.3 80.5 83.3 83.8 78.2 80.9

(step 1, Section 6) Collins 90.4 83.7 87.0 87.0 80.6 83.7 84.6 78.4 81.4
after adding nodes Charniak 90.1 85.4 87.7 86.5 82.0 84.2 84.1 79.8 81.9
(step 2, Section 7) Collins 90.6 85.3 87.9 87.2 82.1 84.6 84.9 79.9 82.3
after adding arcs Charniak 90.0 89.7 89.8 86.5 86.2 86.4 84.2 83.9 84.0

(step 3, Section 8) Collins 90.4 89.4 89.9 87.1 86.2 86.6 84.9 83.9 84.4

Table 1: Dependency-based evaluation of the parsers after different transformation steps

but slightly lower f-score on dependencies without
functional tags (82.9% vs. 83.4%).

To summarize the evaluation scores at this stage,
both parsers perform with f-score around 87%
on unlabelled dependencies. When evaluating on
bare dependency labels (i.e., disregarding func-
tional tags) the performance drops to 83%. The
new errors that appear when taking labels into ac-
count come from different sources: incorrect POS
tags (NN vs. VBG), different degrees of flatness of
analyses in gold and test parses (JJ vs. ADJP, or
CD vs. QP) and inconsistencies in the Penn anno-
tation (VP vs. RRC). Finally, the performance goes
down to around 66% when taking into account func-
tional tags, which are not produced by the parsers at
all.

6 Step 1: Changing Dependency Labels

Intuitively, it seems that the 66% performance on
labels with functional tags is an underestimation,
because much of the missing information is easily
recoverable. E.g., one can think of simple heuris-
tics to distinguish subject NPs, temporal PPs, etc.,
thus introducing functional labels and improving
the scores. Developing such heuristics would be
a very time consuming and ad hoc process: e.g.,
Collins’ -A and -g tags may give useful clues for
this labelling, but they are not available in the out-
put of other parsers. As an alternative to hard-
coded heuristics, Blaheta and Charniak (2000) pro-
posed to recover the Penn functional tags automat-
ically. On the Penn Treebank, they trained a sta-
tistical model that, given a constituent in a parsed
sentence and its context (parent, grandparent, head
words thereof etc.), predicted the functional label,
possibly empty. The method gave impressive per-
formance, with 98.64% accuracy on all constituents
and 87.28% f-score for non-empty functional la-
bels, when applied to constituents correctly identi-
fied by Charniak’s parser. If we extrapolate these re-

sults to labelled PARSEVAL with functional labels,
the method would give around 87.8% performance
(98.64% of the “usual” 89%) for Charniak’s parser.

Adding functional labels can be viewed as a
relabelling task: we need to change the labels
produced by a parser. We considered this more
general task, and used a different approach,
taking dependency graphs as input. We first
parsed the training part of our dependency tree-
bank (sections 02–21) and identified possible
relabellings by comparing dependencies output
by a parser to dependencies from the treebank.
E.g., for Collins’ parser the most frequent rela-
bellings were S � NP � S � NP-SBJ, PP � NP-A � PP � NP,
VP � NP-A � VP � NP, S � NP-A � S � NP-SBJ and
VP � PP � VP � PP-CLR. In total, around 30% of
all the parser’s dependencies had different labels
in the treebank. We then learned a mapping from
the parser’s labels to those in the dependency
corpus, using TiMBL, a memory-based classifier
(Daelemans et al., 2003). The features used for
the relabelling were similar to those used by Bla-
heta and Charniak, but redefined for dependency
structures. For each dependency we included:

� the head (
�

) and dependent (�), their POS tags;
� the leftmost dependent of � and its POS;
� the head of

�
(
���

), its POS and the label of the
dependency

�������
;

� the closest left and right siblings of � (depen-
dents of

�
) and their POS tags;

� the label of the dependency (� ���
) as derived

from the parser’s output.

When included in feature vectors, all dependency
labels were split at ‘ 	 ’, e.g., the label S � NP-A resulted
in two features: S and NP-A.

Testing was done as follows. The test corpus
(section 23) was also parsed, and for each depen-
dency a feature vector was formed and given to

TiMBL to correct the dependency label. After this
transformation the outputs of the parsers were eval-
uated, as before, on dependencies in the three set-
tings. The results of the evaluation are shown in
Table 1 (the row marked “step 1”).

Let us take a closer look at the evaluation re-
sults. Obviously, relabelling does not change the
unlabelled scores. The 1% improvement for eval-
uation on bare labels suggests that our approach
is capable not only of adding functional tags, but
can also correct the parser’s phrase labels and part-
of-speech tags: for Collins’ parser the most fre-
quent correct changes not involving functional la-
bels were NP � NN

�
NP � JJ and NP � JJ

�
NP � VBN, fix-

ing POS tagging errors. A very substantial increase
of the labelled score (from 66% to 81%), which is
only 6% lower than unlabelled score, clearly indi-
cates that, although the parsers do not produce func-
tional labels, this information is to a large extent im-
plicitly present in trees and can be recovered.

6.1 Comparison to Earlier Work

One effect of the relabelling procedure described
above is the recovery of Penn functional tags. Thus,
it is informative to compare our results with those
reported in (Blaheta and Charniak, 2000) for this
same task. Blaheta and Charniak measured tag-
ging accuracy and precision/recall for functional tag
identification only for constituents correctly identi-
fied by the parser (i.e., having the correct span and
nonterminal label). Since our method uses the de-
pendency formalism, to make a meaningful com-
parison we need to model the notion of a constituent
being correctly found by a parser. For a word � we
say that the constituent corresponding to its maxi-
mal projection is correctly identified if there exists�

, the head of � , and for the dependency �
���

the
right part of its label (e.g., NP-SBJ for S � NP-SBJ) is
a nonterminal (i.e., not a POS tag) and matches the
right part of the label in the gold dependency struc-
ture, after stripping functional tags. Thus, the con-
stituent’s label and headword should be correct, but
not necessarily the span. Moreover, 2.5% of all con-
stituents with functional labels (246 out of 9928 in
section 23) are not maximal projections. Since our
method ignores functional tags of such constituents
(these tags disappear after the conversion of phrase
structures to dependency graphs), we consider them
as errors, i.e., reducing our recall value.

Below, the tagging accuracy, precision and recall
are evaluated on constituents correctly identified by
Charniak’s parser for section 23.

Method Accuracy P R f
Blaheta 98.6 87.2 87.4 87.3
This paper 94.7 90.2 86.9 88.5

The difference in the accuracy is due to two reasons.
First, because of the different definition of a cor-
rectly identified constituent in the parser’s output,
we apply our method to a greater portion of all la-
bels produced by the parser (95% vs. 89% reported
in (Blaheta and Charniak, 2000)). This might make
the task for out system more difficult. And second,
whereas 22% of all constituents in section 23 have a
functional tag, 36% of the maximal projections have
one. Since we apply our method only to labels of
maximal projections, this means that our accuracy
baseline (i.e., never assign any tag) is lower.

7 Step 2: Adding Missing Nodes

As the row labelled “step 1” in Table 1 indicates,
for both parsers the recall is relatively low (6%
lower than the precision): while the WSJ trees,
and hence the derived dependency structures, con-
tain non-local dependencies and empty nodes, the
parsers simply do not provide this information. To
make up for this, we considered two further tran-
formations of the output of the parsers: adding new
nodes (corresponding to empty nodes in WSJ), and
adding new labelled arcs. This section describes the
former modification and Section 8 the latter.

As described in Section 4, when converting WSJ
trees to dependency structures, traces are resolved,
their empty nodes removed and new dependencies
introduced. Of the remaining empty nodes (i.e.,
non-traces), the most frequent in WSJ are: NP PRO,
empty units, empty complementizers, empty rela-
tive pronouns. To add missing empty nodes to de-
pendency graphs, we compared the output of the
parsers on the strings of the training corpus after
steps 0 and 1 (conversion to dependencies and re-
labelling) to the structures in the corpus itself. We
trained a classifier which, for every word in the
parser’s output, had to decide whether an empty
node should be added as a new dependent of the
word, and what its symbol (‘*’, ‘*U*’ or ‘0’ in
WSJ), POS tag (always -NONE- in WSJ) and the
label of the new dependency (e.g., ‘S � NP-SBJ’ for
NP PRO and ‘VP � SBAR’ for empty complementiz-
ers) should be. This decision is conditioned on the
word itself and its context. The features used were:

� the word and its POS tag, whether the word
has any subject and object dependents, and
whether it is the head of a finite verb group;

� the same information for the word’s head (if

any) and also the label of the corresponding de-
pendency;

� the same information for the rightmost and
leftmost dependents of the word (if exist) along
with their dependency labels.

In total, we extracted 23 symbolic features for ev-
ery word in the corpus. TiMBL was trained on sec-
tions 02–21 and applied to the output of the parsers
(after steps 0 and 1) on the test corpus (section
23), producing a list of empty nodes to be inserted
in the dependency graphs. After insertion of the
empty nodes, the resulting structures were evaluated
against section 23 of the gold dependency treebank.
The results are shown in Table 1 (the row “step 2”).
For both parsers the insertion of empty nodes im-
proves the recall by 1.5%, resulting in a 1% increase
of the f-score.

7.1 Comparison to Earlier Work

A procedure for empty node recovery was first de-
scribed in (Johnson, 2002), along with an evalua-
tion criterion: an empty node is correct if its cate-
gory and position in the sentence are correct. Since
our method works with dependency structures, not
phrase trees, we adopt a different but comparable
criterion: an empty node should be attached as a
dependent to the correct word, and with the correct
dependency label. Unlike the first metric, our cor-
rectness criterion also requires that possible attach-
ment ambiguities are resolved correctly (e.g., as in
the number of reports 0 they sent, where the empty
relative pronoun may be attached either to number
or to reports).

For this task, the best published results (using
Johnson’s metric) were reported by Dienes and
Dubey (2003), who used shallow tagging to insert
empty elements. Below we give the comparison to
our method. Notice that this evaluation does not in-
clude traces (i.e., empty elements with antecedents):
recovery of traces is described in Section 8.

Type
This paper Dienes&Dubey

P R f P R f
PRO-NP 73.1 63.89 68.1 68.7 70.4 69.5

COMP-SBAR 82.6 83.1 82.8 93.8 78.6 85.5
COMP-WHNP 65.3 40.0 49.6 67.2 38.3 48.8

UNIT 95.4 91.8 93.6 99.1 92.5 95.7

For comparison we use the notation of Dienes and
Dubey: PRO-NP for uncontrolled PROs (nodes ‘*’
in the WSJ), COMP-SBAR for empty complemen-
tizers (nodes ‘0’ with dependency label VP � SBAR),
COMP-WHNP for empty relative pronouns (nodes

‘0’ with dependency label X � SBAR, where X
�� VP)

and UNIT for empty units (nodes ‘*U*’).
It is interesting to see that for empty nodes ex-

cept for UNIT both methods have their advantages,
showing better precision or better recall. Yet shal-
low tagging clearly performs better for UNIT.

8 Step 3: Adding Missing Dependencies
We now get to the third and final step of our trans-
formation method: adding missing arcs to depen-
dency graphs. The parsers we considered do not
explicitly provide information about non-local de-
pendencies (control, WH-extraction) present in the
treebank. Moreover, newly inserted empty nodes
(step 2, Section 7) might also need more links to the
rest of a sentence (e.g., the inserted empty comple-
mentizers). In this section we describe the insertion
of missing dependencies.

Johnson (2002) was the first to address recovery
of non-local dependencies in a parser’s output. He
proposed a pattern-matching algorithm: first, from
the training corpus the patterns that license non-
local dependencies are extracted, and then these pat-
terns are detected in unseen trees, dependencies be-
ing added when matches are found. Building on
these ideas, Jijkoun (2003) used a machine learning
classifier to detect matches. We extended Jijkoun’s
approach by providing the classifier with lexical in-
formation and using richer patterns with labels con-
taining the Penn functional tags and empty nodes,
detected at steps 1 and 2.

First, we compared the output of the parsers on
the strings of the training corpus after steps 0, 1 and
2 to the dependency structures in the training cor-
pus. For every dependency that is missing in the
parser’s output, we find the shortest undirected path
in the dependency graph connecting the head and
the dependent. These paths, connected sequences
of labelled dependencies, define the set of possible
patterns. For our experiments we only considered
patterns occuring more than 100 times in the train-
ing corpus. E.g., for Collins’ parser, 67 different
patterns were found.

Next, from the parsers’ output on the strings of
the training corpus, we extracted all occurrences of
the patterns, along with information about the nodes
involved. For every node in an occurrence of a pat-
tern we extracted the following features:

� the word and its POS tag;
� whether the word has subject and object depen-

dents;
� whether the word is the head of a finite verb

cluster.

We then trained TiMBL to predict the label of the
missing dependency (or ‘none’), given an occur-
rence of a pattern and the features of all the nodes
involved. We trained a separate classifier for each
pattern.

For evaluation purposes we extracted all occur-
rences of the patterns and the features of their nodes
from the parsers’ outputs for section 23 after steps
0, 1 and 2 and used TiMBL to predict and insert new
dependencies. Then we compared the resulting de-
pendency structures to the gold corpus. The results
are shown in Table 1 (the row “step 3”). As ex-
pected, adding missing dependencies substantially
improves the recall (by 4% for both parsers) and
allows both parsers to achieve an 84% f-score on
dependencies with functional tags (90% on unla-
belled dependencies). The unlabelled f-score 89.9%
for Collins’ parser is close to the 90.9% reported
in (Collins, 1999) for the evaluation on unlabelled
local dependencies only (without empty nodes and
traces). Since as many as 5% of all dependencies
in WSJ involve traces or empty nodes, the results in
Table 1 are encouraging.

8.1 Comparison to Earlier Work

Recently, several methods for the recovery of non-
local dependencies have been described in the lit-
erature. Johnson (2002) and Jijkoun (2003) used
pattern-matching on local phrase or dependency
structures. Dienes and Dubey (2003) used shallow
preprocessing to insert empty elements in raw sen-
tences, making the parser itself capable of finding
non-local dependencies. Their method achieves a
considerable improvement over the results reported
in (Johnson, 2002) and gives the best evaluation re-
sults published to date. To compare our results to
Dienes and Dubey’s, we carried out the transforma-
tion steps 0–3 described above, with a single mod-
ification: when adding missing dependencies (step
3), we only considered patterns that introduce non-
local dependencies (i.e., traces: we kept the infor-
mation whether a dependency is a trace when con-
verting WSJ to a dependency corpus).

As before, a dependency is correctly found if
its head, dependent, and label are correct. For
traces, this corresponds to the evaluation using the
head-based antecedent representation described in
(Johnson, 2002), and for empty nodes without an-
tecedents (e.g., NP PRO) this is the measure used
in Section 7.1. To make the results comparable to
other methods, we strip functional tags from the
dependency labels before label comparison. Be-
low are the overall precision, recall, and f-score for
our method and the scores reported in (Dienes and

Dubey, 2003) for antecedent recovery using Collins’
parser.

Method P R f
Dienes and Dubey 81.5 68.7 74.6
This paper 82.8 67.8 74.6

Interestingly, the overall performance of our post-
processing method is very similar to that of the
pre- and in-processing methods of Dienes and
Dubey (2003). Hence, for most cases, traces and
empty nodes can be reliably identified using only
local information provided by a parser, using the
parser itself as a black box. This is important, since
making parsers aware of non-local relations need
not improve the overall performance: Dienes and
Dubey (2003) report a decrease in PARSEVAL f-
score from 88.2% to 86.4% after modifying Collins’
parser to resolve traces internally, although this al-
lowed them to achieve high accuracy for traces.

9 Discussion
The experiments described in the previous sections
indicate that although statistical parsers do not ex-
plicitly output some information available in the
corpus they were trained on (grammatical and se-
mantic tags, empty nodes, non-local dependencies),
this information can be recovered with reasonably
high accuracy, using pattern matching and machine
learning methods.

For our task, using dependency structures rather
than phrase trees has several advantages. First, af-
ter converting both the treebank trees and parsers’
outputs to graphs with head–modifier relations, our
method needs very little information about the lin-
guistic nature of the data, and thus is largely corpus-
and parser-independent. Indeed, after the conver-
sion, the only linguistically informed operation is
the straightforward extraction of features indicating
the presence of subject and object dependents, and
finiteness of verb groups.

Second, using a dependency formalism facilitates
a very straightforward evaluation of the systems that
produce structures more complex than trees. It is
not clear whether the PARSEVAL evaluation can be
easily extended to take non-local relations into ac-
count (see (Johnson, 2002) for examples of such ex-
tension).

Finally, the independence from the details of the
parser and the corpus suggests that our method can
be applied to systems based on other formalisms,
e.g., (Hockenmaier, 2003), to allow a meaning-
ful dependency-based comparison of very different
parsers. Furthermore, with the fine-grained set of
dependency labels that our system provides, it is

possible to map the resulting structures to other de-
pendency formalisms, either automatically in case
annotated corpora exist, or with a manually devel-
oped set of rules. Our preliminary experiments with
Collins’ parser and the corpus annotated with gram-
matical relations (Carroll et al., 2003) are promis-
ing: the system achieves 76% precision/recall f-
score, after the parser’s output is enriched with our
method and transformed to grammatical relations
using a set of 40 simple rules. This is very close
to the performance reported by Carroll et al. (2003)
for the parser specifically designed for the extrac-
tion of grammatical relations.

Despite the high-dimensional feature spaces, the
large number of lexical features, and the lack of in-
dependence between features, we achieved high ac-
curacy using a memory-based learner. TiMBL per-
formed well on tasks where structured, more com-
plicated and task-specific statistical models have
been used previously (Blaheta and Charniak, 2000).
For all subtasks we used the same settings for
TiMBL: simple feature overlap measure, 5 nearest
neighbours with majority voting. During further ex-
periments with our method on different corpora, we
found that quite different settings led to a better per-
formance. It is clear that more careful and system-
atic parameter tuning and the analysis of the contri-
bution of different features have to be addressed.

Finally, our method is not restricted to syntac-
tic structures. It has been successfully applied
to the identification of semantic relations (Ahn et
al., 2004), using FrameNet as the training corpus.
For this task, we viewed semantic relations (e.g.,
Speaker, Topic, Addressee) as dependencies be-
tween a predicate and its arguments. Adding such
semantic relations to syntactic dependency graphs
was simply an additional graph transformation step.

10 Conclusions
We presented a method to automatically enrich the
output of a parser with information that is not pro-
vided by the parser itself, but is available in a tree-
bank. Using the method with two state of the art
statistical parsers and the Penn Treebank allowed
us to recover functional tags (grammatical and se-
mantic), empty nodes and traces. Thus, we are able
to provide virtually all information available in the
corpus, without modifying the parser, viewing it, in-
deed, as a black box.

Our method allows us to perform a meaningful
dependency-based comparison of phrase structure
parsers. The evaluation on a dependency corpus
derived from the Penn Treebank showed that, after
our post-processing, two state of the art statistical

parsers achieve 84% accuracy on a fine-grained set
of dependency labels.

Finally, our method for enriching the output of a
parser is, to a large extent, independent of a specific
parser and corpus, and can be used with other syn-
tactic and semantic resources.

11 Acknowledgements
We are grateful to David Ahn and Stefan Schlobach
and to the anonymous referees for their useful
suggestions. This research was supported by
grants from the Netherlands Organization for Scien-
tific Research (NWO) under project numbers 220-
80-001, 365-20-005, 612.069.006, 612.000.106,
612.000.207 and 612.066.302.

References
David Ahn, Sisay Fissaha, Valentin Jijkoun, and Maarten

de Rijke. 2004. The University of Amsterdam at
Senseval-3: semantic roles and logic forms. In Pro-
ceedings of the ACL-2004 Workshop on Evaluation of
Systems for the Semantic Analysis of Text.

Don Blaheta and Eugene Charniak. 2000. Assigning
function tags to parsed text. In Proceedings of the 1st
Meeting of NAACL, pages 234–240.

John Carroll, Guido Minnen, and Ted Briscoe. 2003.
Parser evaluation using a grammatical relation anno-
tation scheme. In Anne Abeillé, editor, Building and
Using Parsed Corpora, pages 299–316. Kluwer.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the 1st Meeting of NAACL,
pages 132–139.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot,
and Antal van den Bosch, 2003. TiMBL: Tilburg
Memory Based Learner, version 5.0, Reference
Guide. ILK Technical Report 03-10. Available from
http://ilk.kub.nl/downloads/pub/papers/ilk0310.ps.gz.

Péter Dienes and Amit Dubey. 2003. Antecedent recov-
ery: Experiments with a trace tagger. In Proceedings
of the 2003 Conference on Empirical Methods in Nat-
ural Language Processing, pages 33–40.

Julia Hockenmaier. 2003. Parsing with generative mod-
els of predicate-argument structure. In Proceedings of
the 41st Meeting of ACL, pages 359–366.

Valentin Jijkoun. 2003. Finding non-local dependen-
cies: Beyond pattern matching. In Proceedings of the
ACL-2003 Student Research Workshop, pages 37–43.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. In Proceedings of the 40th meeting of ACL,
pages 136–143.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the 41st
Meeting of ACL, pages 423–430.

