
An alternative method of training probabilistic LR parsers

Mark-Jan Nederhof
Faculty of Arts

University of Groningen
P.O. Box 716

NL-9700 AS Groningen
The Netherlands

markjan@let.rug.nl

Giorgio Satta
Dept. of Information Engineering

University of Padua
via Gradenigo, 6/A

I-35131 Padova
Italy

satta@dei.unipd.it

Abstract

We discuss existing approaches to train LR parsers,
which have been used for statistical resolution of
structural ambiguity. These approaches are non-
optimal, in the sense that a collection of probability
distributions cannot be obtained. In particular, some
probability distributions expressible in terms of a
context-free grammar cannot be expressed in terms
of the LR parser constructed from that grammar,
under the restrictions of the existing approaches to
training of LR parsers. We present an alternative
way of training that is provably optimal, and that al-
lows all probability distributions expressible in the
context-free grammar to be carried over to the LR
parser. We also demonstrate empirically that this
kind of training can be effectively applied on a large
treebank.

1 Introduction

The LR parsing strategy was originally devised
for programming languages (Sippu and Soisalon-
Soininen, 1990), but has been used in a wide range
of other areas as well, such as for natural language
processing (Lavie and Tomita, 1993; Briscoe and
Carroll, 1993; Ruland, 2000). The main difference
between the application to programming languages
and the application to natural languages is that in
the latter case the parsers should be nondetermin-
istic, in order to deal with ambiguous context-free
grammars (CFGs). Nondeterminism can be han-
dled in a number of ways, but the most efficient
is tabulation, which allows processing in polyno-
mial time. Tabular LR parsing is known from the
work by (Tomita, 1986), but can also be achieved
by the generic tabulation technique due to (Lang,
1974; Billot and Lang, 1989), which assumes an in-
put pushdown transducer (PDT). In this context, the
LR parsing strategy can be seen as a particular map-
ping from context-free grammars to PDTs.

The acronym ‘LR’ stands for ‘Left-to-right pro-
cessing of the input, producing a Right-most deriva-
tion (in reverse)’. When we construct a PDTA from

a CFGG by the LR parsing strategy and apply it on
an input sentence, then the set of output strings ofA
represents the set of all right-most derivations thatG
allows for that sentence. Such an output string enu-
merates the rules (or labels that identify the rules
uniquely) that occur in the corresponding right-most
derivation, in reversed order.

If LR parsers do not use lookahead to decide be-
tween alternative transitions, they are called LR(0)
parsers. More generally, if LR parsers look aheadk
symbols, they are called LR(k) parsers; some sim-
plified LR parsing models that use lookahead are
called SLR(k) and LALR(k) parsing (Sippu and
Soisalon-Soininen, 1990). In order to simplify the
discussion, we abstain from using lookahead in this
article, and ‘LR parsing’ can further be read as
‘LR(0) parsing’. We would like to point out how-
ever that our observations carry over to LR parsing
with lookahead.

The theory of probabilistic pushdown automata
(Santos, 1972) can be easily applied to LR parsing.
A probability is then assigned to each transition, by
a function that we will call theprobability function
pA, and the probability of an accepting computa-
tion of A is the product of the probabilities of the
applied transitions. As each accepting computation
produces a right-most derivation as output string, a
probabilistic LR parser defines a probability distri-
bution on the set of parses, and thereby also a prob-
ability distribution on the set of sentences generated
by grammarG. Disambiguation of an ambiguous
sentence can be achieved on the basis of a compari-
son between the probabilities assigned to the respec-
tive parses by the probabilistic LR model.

The probability function can be obtained on the
basis of a treebank, as proposed by (Briscoe and
Carroll, 1993) (see also (Su et al., 1991)). The
model by (Briscoe and Carroll, 1993) however in-
corporated a mistake involving lookahead, which
was corrected by (Inui et al., 2000). As we will not
discuss lookahead here, this matter does not play a
significant role in the current study. Noteworthy is
that (Sornlertlamvanich et al., 1999) showed empir-

ically that an LR parser may be more accurate than
the original CFG, if both are trained on the basis
of the same treebank. In other words, the resulting
probability functionpA on transitions of the PDT
allows better disambiguation than the correspond-
ing functionpG on rules of the original grammar.

A plausible explanation of this is that stack sym-
bols of an LR parser encode some amount of left
context, i.e. information on rules applied earlier, so
that the probability function on transitions may en-
code dependencies between rules that cannot be en-
coded in terms of the original CFG extended with
rule probabilities. The explicit use of left con-
text in probabilistic context-free models was inves-
tigated by e.g. (Chitrao and Grishman, 1990; John-
son, 1998), who also demonstrated that this may
significantly improve accuracy. Note that the prob-
ability distributions of language may be beyond the
reach of a given context-free grammar, as pointed
out by e.g. (Collins, 2001). Therefore, the use of left
context, and the resulting increase in the number of
parameters of the model, may narrow the gap be-
tween the given grammar and ill-understood mech-
anisms underlying actual language.

One important assumption that is made by
(Briscoe and Carroll, 1993) and (Inui et al., 2000)
is that trained probabilistic LR parsers should be
proper, i.e. if several transitions are applicable for
a given stack, then the sum of probabilities as-
signed to those transitions by probability function
pA should be 1. This assumption may be moti-
vated by pragmatic considerations, as such a proper
model is easy to train byrelative frequency estima-
tion: count the number of times a transition is ap-
plied with respect to a treebank, and divide it by
the number of times the relevant stack symbol (or
pair of stack symbols) occurs at the top of the stack.
Let us call the resulting probability functionprfe .
This function is provably optimal in the sense that
the likelihood it assigns to the training corpus is
maximal among all probability functionspA that are
proper in the above sense.

However, properness restricts the space of prob-
ability distributions that a PDT allows. This means
that a (consistent) probability functionpA may ex-
ist that is not proper and that assigns a higher like-
lihood to the training corpus thanprfe does. (By
‘consistent’ we mean that the probabilities of all
strings that are accepted sum to 1.) It may even
be the case that a (proper and consistent) probabil-
ity function pG on the rules of the input grammarG
exists that assigns a higher likelihood to the corpus
thanprfe , and therefore it is not guaranteed that LR
parsers allow better probability estimates than the

CFGs from which they were constructed, if we con-
strain probability functionspA to be proper. In this
respect, LR parsing differs from at least one other
well-known parsing strategy, viz. left-corner pars-
ing. See (Nederhof and Satta, 2004) for a discus-
sion of a property that is shared by left-corner pars-
ing but not by LR parsing, and which explains the
above difference.

As main contribution of this paper we establish
that this restriction on expressible probability dis-
tributions can be dispensed with, without losing the
ability to perform training by relative frequency es-
timation. What comes in place of properness is
reverse-properness, which can be seen as proper-
ness of the reversed pushdown automaton that pro-
cesses input from right to left instead of from left to
right, interpreting the transitions ofA backwards.
As we will show, reverse-properness does not re-
strict the space of probability distributions express-
ible by an LR automaton. More precisely, assume
some probability distribution on the set of deriva-
tions is specified by a probability functionpA on
transitions of PDTA that realizes the LR strat-
egy for a given grammarG. Then the same prob-
ability distribution can be specified by an alterna-
tive such functionp′A that is reverse-proper. In ad-
dition, for each probability distribution on deriva-
tions expressible by a probability functionpG for G,
there is a reverse-proper probability functionpA for
A that expresses the same probability distribution.
Thereby we ensure that LR parsers become at least
as powerful as the original CFGs in terms of allow-
able probability distributions.

This article is organized as follows. In Sec-
tion 2 we outline our formalization of LR pars-
ing as a construction of PDTs from CFGs, making
some superficial changes with respect to standard
formulations. Properness and reverse-properness
are discussed in Section 3, where we will show
that reverse-properness does not restrict the space
of probability distributions. Section 4 reports on ex-
periments, and Section 5 concludes this article.

2 LR parsing

As LR parsing has been extensively treated in exist-
ing literature, we merely recapitulate the main defi-
nitions here. For more explanation, the reader is re-
ferred to standard literature such as (Harrison, 1978;
Sippu and Soisalon-Soininen, 1990).

An LR parser is constructed on the basis of a CFG
that is augmented with an additional ruleS† →` S,
whereS is the former start symbol, and the new
nonterminalS† becomes the start symbol of the
augmented grammar. The new terminal` acts as

an imaginary start-of-sentence marker. We denote
the set of terminals byΣ and the set of nontermi-
nals byN . We assume each rule has a unique label
r.

As explained before, we construct LR parsers as
pushdown transducers. The main stack symbols
of these automata are sets ofdotted rules, which
consist of rules from the augmented grammar with
a distinguished position in the right-hand side in-
dicated by a dot ‘•’. The initial stack symbol is
pinit = {S† → ` • S}.

We define the closure of a setp of dotted rules as
the smallest setclosure(p) such that:

1. p ⊆ closure(p); and

2. for (B → α • Aβ) ∈ closure(p) andA →
γ a rule in the grammar, also(A → • γ) ∈
closure(p).

We define the operationgoto on a setp of dotted
rules and a grammar symbolX ∈ Σ ∪N as:

goto(p,X) = {A→ αX • β |
(A→ α • Xβ) ∈ closure(p)}

The set ofLR statesis the smallest set such that:

1. pinit is an LR state; and

2. if p is an LR state andgoto(p,X) = q 6= ∅, for
someX ∈ Σ ∪N , thenq is an LR state.

We will assume that PDTs consist of three types

of transitions, of the formP
a,b7→ P Q (a push tran-

sition), of the formP
a,b7→ Q (a swap transition), and

of the formP Q
a,b7→ R (a pop transition). HereP ,Q

andR are stack symbols,a is one input terminal or
is the empty stringε, andb is one output terminal or
is the empty stringε. In our notation, stacks grow

from left to right, so thatP
a,b7→ P Q means thatQ is

pushed on top ofP . We do not have internal states
next to stack symbols.

For the PDT that implements the LR strategy, the
stack symbols are the LR states, plus symbols of the
form [p;X], wherep is an LR state andX is a gram-
mar symbol, and symbols of the form(p,A,m),
wherep is an LR state,A is the left-hand side of
some rule, andm is the length of some prefix of the
right-hand side of that rule. More explanation on
these additional stack symbols will be given below.

The stack symbols and transitions are simultane-
ously defined in Figure 1. The final stack symbol
is pfinal = (pinit , S

†, 0). This means that an input
a1 · · · an is accepted if and only if it is entirely read
by a sequence of transitions that take the stack con-
sisting only ofpinit to the stack consisting only of

pfinal . The computed output consists of the string of
terminalsb1 · · · bn′ from the output components of
the applied transitions. For the PDTs that we will
use, this output string will consist of a sequence of
rule labels expressing a right-most derivation of the
input. On the basis of the original grammar, the cor-
responding parse tree can be constructed from such
an output string.

There are a few superficial differences with LR
parsing as it is commonly found in the literature.
The most obvious difference is that we divide re-
ductions into ‘binary’ steps. The main reason is that
this allows tabular interpretation with a time com-
plexity cubic in the length of the input. Otherwise,
the time complexity would beO(nm+1), wherem
is the length of the longest right-hand side of a rule
in the CFG. This observation was made before by
(Kipps, 1991), who proposed a solution similar to
ours, albeit formulated differently. See also a related
formulation of tabular LR parsing by (Nederhof and
Satta, 1996).

To be more specific, instead of one step of the
PDT taking stack:
σp0p1 · · · pm
immediately to stack:
σp0q

where(A → X1 · · ·Xm •) ∈ pm, σ is a string
of stack symbols andgoto(p0, A) = q, we have
a number of smaller steps leading to a series of
stacks:
σp0p1 · · · pm−1pm
σp0p1 · · · pm−1(A,m−1)
σp0p1 · · · (A,m−2)
...
σp0(A, 0)
σp0q

There are two additional differences. First, we
want to avoid steps of the form:

σp0(A, 0)
σp0q

by transitionsp0 (A, 0)
ε,ε7→ p0 q, as such transitions

complicate the generic definition of ‘properness’
for PDTs, to be discussed in the following section.
For this reason, we use stack symbols of the form
[p;X] next top, and split upp0 (A, 0)

ε,ε7→ p0 q into
pop [p0;X0] (A, 0)

ε,ε7→ [p0;A] and push[p0;A]
ε,ε7→

[p0;A] q. This is a harmless modification, which in-
creases the number of steps in any computation by
at most a factor 2.

Secondly, we use stack symbols of the form
(p,A,m) instead of(A,m). This concerns the con-
ditions of reverse-properness to be discussed in the

• For LR statep anda ∈ Σ such thatgoto(p, a) 6= ∅:

p
a,ε7→ [p; a] (1)

• For LR statep and(A→ •) ∈ p, whereA→ ε has labelr:

p
ε,r7→ [p;A] (2)

• For LR statep and(A→ α •) ∈ p, where|α| = m > 0 andA→ α has labelr:

p
ε,r7→ (p,A,m− 1) (3)

• For LR statep and(A→ α • Xβ) ∈ p, where|α| = m > 0, such thatgoto(p,X) = q 6= ∅:

[p;X] (q, A,m)
ε,ε7→ (p,A,m− 1) (4)

• For LR statep and(A→ • Xβ) ∈ p, such thatgoto(p,X) = q 6= ∅:

[p;X] (q, A, 0)
ε,ε7→ [p;A] (5)

• For LR statep andX ∈ Σ ∪N such thatgoto(p,X) = q 6= ∅:

[p;X]
ε,ε7→ [p;X] q (6)

Figure 1: The transitions of a PDT implementing LR(0) parsing.

following section. By this condition, we consider
LR parsing as being performed from right to left, so
backwards with regard to the normal processing or-
der. If we were to omit the first componentsp from
stack symbols(p,A,m), we may obtain ‘dead ends’
in the computation. We know that such dead ends
make a (reverse-)proper PDT inconsistent, as proba-
bility mass lost in dead ends causes the sum of prob-
abilities of all computations to be strictly smaller
than 1. (See also (Nederhof and Satta, 2004).) It
is interesting to note that the addition of the compo-
nentsp to stack symbols(p,A,m) doesnot increase
the number of transitions, and the nature of LR pars-
ing in the normal processing order from left to right
is preserved.

With all these changes together, reductions
are implemented by transitions resulting in the
following sequence of stacks:

σ′[p0;X0][p1;X1] · · · [pm−1;Xm−1]pm
σ′[p0;X0][p1;X1] · · · [pm−1;Xm−1](pm, A,m−1)
σ′[p0;X0][p1;X1] · · · (pm−1, A,m−2)
...
σ′[p0;X0](p1, A, 0)
σ′[p0;A]
σ′[p0;A]q

Please note that transitions of the form
[p;X] (q, A,m)

ε,ε7→ (p,A,m− 1) may corre-
spond to several dotted rules(A → α • Xβ) ∈ p,
with differentα of lengthm and differentβ. If we
were to multiply such transitions for differentα and
β, the PDT would become prohibitively large.

3 Properness and reverse-properness

If a PDT is regarded to process input from left to
right, starting with a stack consisting only ofpinit ,
and ending in a stack consisting only ofpfinal , then
it seems reasonable to cast this process into a prob-
abilistic framework in such a way that the sum of
probabilities of all choices that are possible at any
given moment is 1. This is similar to how the notion
of ‘properness’ is defined for probabilistic context-
free grammars (PCFGs); we say a PCFG is proper if
for each nonterminalA, the probabilities of all rules
with left-hand sideA sum to 1.

Properness for PCFGs does not restrict the space
of probability distributions on the set of parse trees.
In other words, if a probability distribution can be
defined by attaching probabilities to rules, then we
may reassign the probabilities such that that PCFG
becomes proper, while preserving the probability
distribution. This even holds if the input grammar
is non-tight, meaning that probability mass is lost
in ‘infinite derivations’ (Śanchez and Benedı́, 1997;
Chi and Geman, 1998; Chi, 1999; Nederhof and
Satta, 2003).

Although CFGs and PDTs are weakly equiva-
lent, they behave very differently when they are ex-
tended with probabilities. In particular, there seems
to be no notion similar to PCFG properness that
can be imposed on all types of PDTs without los-
ing generality. Below we will discuss two con-
straints, which we will call properness and reverse-
properness. Neither of these is suitable for all types
of PDTs, but as we will show, the second is more

suitable for probabilistic LR parsing than the first.
This is surprising, as only properness has been de-
scribed in existing literature on probabilistic PDTs
(PPDTs). In particular, all existing approaches to
probabilistic LR parsing have assumed properness
rather than anything related to reverse-properness.

For properness we have to assume that for each
stack symbolP , we either have one or more tran-

sitions of the formP
a,b7→ P Q or P

a,b7→ Q, or one

or more transitions of the formQ P
a,b7→ R, but no

combination thereof. In the first case, properness
demands that the sum of probabilities of all transi-

tionsP
a,b7→ P Q andP

a,b7→ Q is 1, and in the second
case properness demands that the sum of probabili-

ties of all transitionsQ P
a,b7→ R is 1 for eachQ.

Note that our assumption above is without loss
of generality, as we may introduce swap transitions
P

ε,ε7→ P1 andP
ε,ε7→ P2, whereP1 andP2 are new

stack symbols, and replace transitionsP
a,b7→ P Q

andP
a,b7→ Q by P1

a,b7→ P1 Q andP1
a,b7→ Q, and

replace transitionsQ P
a,b7→ R byQ P2

a,b7→ R.
The notion of properness underlies the normal

training process for PDTs, as follows. We assume
a corpus of PDT computations. In these computa-
tions, we count the number of occurrences for each
transition. For eachP we sum the total number of
all occurrences of transitionsP

a,b7→ P Q orP
a,b7→ Q.

The probability of, say, a transitionP
a,b7→ P Q is

now estimated by dividing the number of occur-
rences thereof in the corpus by the above total num-
ber of occurrences of transitions withP in the left-
hand side. Similarly, for each pair(Q,P) we sum
the total number of occurrences of all transitions of
the formQ P

a,b7→ R, and thereby estimate the proba-

bility of a particular transitionQ P
a,b7→ R by relative

frequency estimation. The resulting PPDT is proper.
It has been shown that imposing properness is

without loss of generality in the case of PDTs
constructed by a wide range of parsing strategies,
among which are top-down parsing and left-corner
parsing. This does not hold for PDTs constructed by
the LR parsing strategy however, and in fact, proper-
ness for such automata may reduce the expressive
power in terms of available probability distributions
to strictly less than that offered by the original CFG.
This was formally proven by (Nederhof and Satta,
2004), after (Ng and Tomita, 1991) and (Wright and
Wrigley, 1991) had already suggested that creating
a probabilistic LR parser that is equivalent to an in-
put PCFG is difficult in general. The same difficulty
for ELR parsing was suggested by (Tendeau, 1997).

For this reason, we investigate a practical alter-
native, viz. reverse-properness. Now we have to as-
sume that for each stack symbolR, we either have

one or more transitions of the formP
a,b7→ R or

Q P
a,b7→ R, or one or more transitions of the form

P
a,b7→ P R, but no combination thereof. In the first

case, reverse-properness demands that the sum of

probabilities of all transitionsP
a,b7→ R orQ P

a,b7→ R
is 1, and in the second case reverse-properness de-
mands that the sum of probabilities of transitions

P
a,b7→ P R is 1 for eachP . Again, our assumption

above is without loss of generality.

In order to apply relative frequency estimation,
we now sum the total number of occurrences of tran-
sitionsP

a,b7→ R or Q P
a,b7→ R for eachR, and we

sum the total number of occurrences of transitions
P

a,b7→ P R for each pair(P,R).
We now prove that reverse-properness does not

restrict the space of probability distributions, by
means of the construction of a ‘cover’ grammar
from an input CFG, as reported in Figure 2. This
cover CFG has almost the same structure as the PDT
resulting from Figure 1. Rules and transitions al-
most stand in a one-to-one relation. The only note-
worthy difference is between transitions of type (6)
and rules of type (12). The right-hand sides of those
rules can beε because the corresponding transitions
are deterministic if seen from right to left. Now it
becomes clear why we needed the componentsp in
stack symbols of the form(p,A,m). Without it, one
could obtain an LR stateq that does not match the
underlying[p;X] in a reversed computation.

We may assume without loss of generality that
rules of type (12) are assigned probability 1, as a
probability other than 1 could be moved to corre-
sponding rules of types (10) or (11) where state
q was introduced. In the same way, we may as-
sume that transitions of type (6) are assigned prob-
ability 1. After making these assumptions, we ob-
tain a bijection between probability functionspA for
the PDT and probability functionspG for the cover
CFG. As was shown by e.g. (Chi, 1999) and (Neder-
hof and Satta, 2003), properness for CFGs does not
restrict the space of probability distributions, and
thereby the same holds for reverse-properness for
PDTs that implement the LR parsing strategy.

It is now also clear that a reverse-proper LR
parser can describe any probability distribution that
the original CFG can. The proof is as follows.
Given a probability functionpG for the input CFG,
we define a probability functionpA for the LR
parser, by letting transitions of types (2) and (3)

• For LR statep anda ∈ Σ such thatgoto(p, a) 6= ∅:
[p; a]→ p (7)

• For LR statep and(A→ •) ∈ p, whereA→ ε has labelr:

[p;A]→ p r (8)

• For LR statep and(A→ α •) ∈ p, where|α| = m > 0 andA→ α has labelr:

(p,A,m− 1)→ p r (9)

• For LR statep and(A→ α • Xβ) ∈ p, where|α| = m > 0, such thatgoto(p,X) = q 6= ∅:
(p,A,m− 1)→ [p;X] (q, A,m) (10)

• For LR statep and(A→ • Xβ) ∈ p, such thatgoto(p,X) = q 6= ∅:
[p;A]→ [p;X] (q, A, 0) (11)

• For LR stateq:

q → ε (12)

Figure 2: A grammar that describes the set of computations of the LR(0) parser. Start symbol ispfinal =
(pinit , S

†, 0). Terminals are rule labels. Generated language consists of right-most derivations in reverse.

have probabilitypG(r), and letting all other transi-
tions have probability 1. This gives us the required
probability distribution in terms of a PPDT that is
not reverse-proper in general. This PPDT can now
be recast into reverse-proper form, as proven by the
above.

4 Experiments
We have implemented both the traditional training
method for LR parsing and the novel one, and have
compared their performance, with two concrete ob-
jectives:

1. We show that the number of free parameters
is significantly larger with the new training
method. (The number of free parameters is
the number of probabilities of transitions that
can be freely chosen within the constraints of
properness or reverse-properness.)

2. The larger number of free parameters does not
make the problem of sparse data any worse,
and precision and recall are at least compara-
ble to, if not better than, what we would obtain
with the established method.

The experiments were performed on the Wall
Street Journal (WSJ) corpus, from the Penn Tree-
bank, version II. Training was done on sections 02-
21, i.e., first a context-free grammar was derived
from the ‘stubs’ of the combined trees, taking parts
of speech as leaves of the trees, omitting all af-
fixes from the nonterminal names, and removingε-
generating subtrees. Such preprocessing of the WSJ

corpus is consistent with earlier attempts to derive
CFGs from that corpus, as e.g. by (Johnson, 1998).
The obtained CFG has 10,035 rules. The dimen-
sions of the LR parser constructed from this gram-
mar are given in Table 1.

The PDT was then trained on the trees from the
same sections 02-21, to determine the number of
times that transitions are used. At first sight it is not
clear how to determine this on the basis of the tree-
bank, as the structure of LR parsers is very differ-
ent from the structure of the grammars from which
they are constructed. The solution is to construct a
second PDT from the PDT to be trained, replacing

each transitionα
a,b7→ β with label r by transition

α
b,r7→ β. By this second PDT we parse the tree-

bank, encoded as a series of right-most derivations
in reverse.1 For each input string, there is exactly
one parse, of which the output is the list of used
transitions. The same method can be used for other
parsing strategies as well, such as left-corner pars-
ing, replacing right-most derivations by a suitable
alternative representation of parse trees.

By the counts of occurrences of transitions, we
may then perform maximum likelihood estimation
to obtain probabilities for transitions. This can
be done under the constraints of properness or of
reverse-properness, as explained in the previous
section. We have not applied any form of smooth-

1We have observed an enormous gain in computational ef-
ficiency when we also incorporate the ‘shifts’ next to ‘reduc-
tions’ in these right-most derivations, as this eliminates a con-
siderable amount of nondeterminism.

total # transitions 8,340,315
push transitions 753,224
swap transitions 589,811
pop transitions 6,997,280

Table 1: Dimensions of PDT implementing LR
strategy for CFG derived from WSJ, sect. 02-21.

proper rev.-prop.
free parameters 577,650 6,589,716
non-zero probabilities 137,134 137,134
labelled precision 0.772 0.777
labelled recall 0.747 0.749

Table 2: The two methods of training, based on
properness and reverse-properness.

ing or back-off, as this could obscure properties in-
herent in the difference between the two discussed
training methods. (Back-off for probabilistic LR
parsing has been proposed by (Ruland, 2000).) All
transitions that were not seen during training were
given probability 0.

The results are outlined in Table 2. Note that the
number of free parameters in the case of reverse-
properness is much larger than in the case of normal
properness. Despite of this, the number of transi-
tions that actually receive non-zero probabilities is
(predictably) identical in both cases, viz. 137,134.
However, the potential for fine-grained probability
estimates and for smoothing and parameter-tying
techniques is clearly greater in the case of reverse-
properness.

That in both cases the number of non-zero prob-
abilities is lower than the total number of parame-
ters can be explained as follows. First, the treebank
contains many rules that occur a small number of
times. Secondly, the LR automaton is much larger
than the CFG; in general, the size of an LR automa-
ton is bounded by a function that is exponential in
the size of the input CFG. Therefore, if we use the
same treebank to estimate the probability function,
then many transitions are never visited and obtain a
zero probability.

We have applied the two trained LR automata
on section 22 of the WSJ corpus, measuring la-
belled precision and recall, as done by e.g. (John-
son, 1998).2 We observe that in the case of reverse-
properness, precision and recall are slightly better.

2We excluded all sentences with more than 30 words how-
ever, as some required prohibitive amounts of memory. Only
one of the remaining 1441 sentences was not accepted by the
parser.

The most important conclusion that can be drawn
from this is that the substantially larger space of
obtainable probability distributions offered by the
reverse-properness method does not come at the ex-
pense of a degradation of accuracy for large gram-
mars such as those derived from the WSJ. For com-
parison, with a standard PCFG we obtain labelled
precision and recall of 0.725 and 0.670, respec-
tively.3

We would like to stress that our experiments
did not have as main objective the improvement of
state-of-the-art parsers, which can certainly not be
done without much additional fine-tuning and the
incorporation of some form of lexicalization. Our
main objectives concerned the relation between our
newly proposed training method for LR parsers and
the traditional one.

5 Conclusions

We have presented a novel way of assigning proba-
bilities to transitions of an LR automaton. Theoreti-
cal analysis and empirical data reveal the following.

• The efficiency of LR parsing remains unaf-
fected. Although a right-to-left order of read-
ing input underlies the novel training method,
we may continue to apply the parser from left
to right, and benefit from the favourable com-
putational properties of LR parsing.

• The available space of probability distributions
is significantly larger than in the case of the
methods published before. In terms of the
number of free parameters, the difference that
we found empirically exceeds one order of
magnitude. By the same criteria, we can now
guarantee that LR parsers are at least as pow-
erful as the CFGs from which they are con-
structed.

• Despite the larger number of free parameters,
no increase of sparse data problems was ob-
served, and in fact there was a small increase
in accuracy.

Acknowledgements

Helpful comments from John Carroll and anony-
mous reviewers are gratefully acknowledged. The
first author is supported by the PIONIER Project
Algorithms for Linguistic Processing, funded by
NWO (Dutch Organization for Scientific Research).
The second author is partially supported by MIUR
under project PRIN No. 2003091149005.

3In this case, all 1441 sentences were accepted.

References

S. Billot and B. Lang. 1989. The structure of shared
forests in ambiguous parsing. In27th Annual
Meeting of the Association for Computational
Linguistics, pages 143–151, Vancouver, British
Columbia, Canada, June.

T. Briscoe and J. Carroll. 1993. Generalized prob-
abilistic LR parsing of natural language (cor-
pora) with unification-based grammars.Compu-
tational Linguistics, 19(1):25–59.

Z. Chi and S. Geman. 1998. Estimation of prob-
abilistic context-free grammars.Computational
Linguistics, 24(2):299–305.

Z. Chi. 1999. Statistical properties of probabilistic
context-free grammars.Computational Linguis-
tics, 25(1):131–160.

M.V. Chitrao and R. Grishman. 1990. Statistical
parsing of messages. InSpeech and Natural Lan-
guage, Proceedings, pages 263–266, Hidden Val-
ley, Pennsylvania, June.

M. Collins. 2001. Parameter estimation for sta-
tistical parsing models: Theory and practice of
distribution-free methods. InProceedings of the
Seventh International Workshop on Parsing Tech-
nologies, Beijing, China, October.

M.A. Harrison. 1978.Introduction to Formal Lan-
guage Theory. Addison-Wesley.

K. Inui, V. Sornlertlamvanich, H. Tanaka, and
T. Tokunaga. 2000. Probabilistic GLR parsing.
In H. Bunt and A. Nijholt, editors,Advances
in Probabilistic and other Parsing Technologies,
chapter 5, pages 85–104. Kluwer Academic Pub-
lishers.

M. Johnson. 1998. PCFG models of linguistic
tree representations.Computational Linguistics,
24(4):613–632.

J.R. Kipps. 1991. GLR parsing in timeO(n3). In
M. Tomita, editor,Generalized LR Parsing, chap-
ter 4, pages 43–59. Kluwer Academic Publishers.

B. Lang. 1974. Deterministic techniques for ef-
ficient non-deterministic parsers. InAutomata,
Languages and Programming, 2nd Colloquium,
volume 14 ofLecture Notes in Computer Science,
pages 255–269, Saarbrücken. Springer-Verlag.

A. Lavie and M. Tomita. 1993. GLR∗ – an efficient
noise-skipping parsing algorithm for context free
grammars. InThird International Workshop on
Parsing Technologies, pages 123–134, Tilburg
(The Netherlands) and Durbuy (Belgium), Au-
gust.

M.-J. Nederhof and G. Satta. 1996. Efficient tab-
ular LR parsing. In34th Annual Meeting of the

Association for Computational Linguistics, pages
239–246, Santa Cruz, California, USA, June.

M.-J. Nederhof and G. Satta. 2003. Probabilis-
tic parsing as intersection. In8th International
Workshop on Parsing Technologies, pages 137–
148, LORIA, Nancy, France, April.

M.-J. Nederhof and G. Satta. 2004. Probabilis-
tic parsing strategies. In42nd Annual Meeting
of the Association for Computational Linguistics,
Barcelona, Spain, July.

S.-K. Ng and M. Tomita. 1991. Probabilistic LR
parsing for general context-free grammars. In
Proc. of the Second International Workshop on
Parsing Technologies, pages 154–163, Cancun,
Mexico, February.

T. Ruland. 2000. A context-sensitive model for
probabilistic LR parsing of spoken language
with transformation-based postprocessing. In
The 18th International Conference on Compu-
tational Linguistics, volume 2, pages 677–683,
Saarbr̈ucken, Germany, July–August.

J.-A. Śanchez and J.-M. Benedı́. 1997. Consis-
tency of stochastic context-free grammars from
probabilistic estimation based on growth trans-
formations.IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 19(9):1052–1055,
September.

E.S. Santos. 1972. Probabilistic grammars and au-
tomata.Information and Control, 21:27–47.

S. Sippu and E. Soisalon-Soininen. 1990.Parsing
Theory, Vol. II: LR(k) and LL(k) Parsing, vol-
ume 20 ofEATCS Monographs on Theoretical
Computer Science. Springer-Verlag.

V. Sornlertlamvanich, K. Inui, H. Tanaka, T. Toku-
naga, and T. Takezawa. 1999. Empirical sup-
port for new probabilistic generalized LR pars-
ing. Journal of Natural Language Processing,
6(3):3–22.

K.-Y. Su, J.-N. Wang, M.-H. Su, and J.-S. Chang.
1991. GLR parsing with scoring. In M. Tomita,
editor,Generalized LR Parsing, chapter 7, pages
93–112. Kluwer Academic Publishers.

F. Tendeau. 1997. Analyse syntaxique et
sémantique avecévaluation d’attributs dans
un demi-anneau. Ph.D. thesis, University of
Orléans.

M. Tomita. 1986. Efficient Parsing for Natural
Language. Kluwer Academic Publishers.

J.H. Wright and E.N. Wrigley. 1991. GLR pars-
ing with probability. In M. Tomita, editor,Gen-
eralized LR Parsing, chapter 8, pages 113–128.
Kluwer Academic Publishers.

