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Abstract 

Grounded language models represent the rela-

tionship between words and the non-linguistic 

context in which they are said.  This paper de-

scribes how they are learned from large cor-

pora of unlabeled video, and are applied to the 

task of automatic speech recognition of sports 

video.  Results show that grounded language 

models improve perplexity and word error 

rate over text based language models, and fur-

ther, support video information retrieval better 

than human generated speech transcriptions. 

1 Introduction 

Recognizing speech in broadcast video is a neces-

sary precursor to many multimodal applications 

such as video search and summarization (Snoek 

and Worring, 2005;).  Although performance is 

often reasonable in controlled environments (such 

as studio news rooms), automatic speech recogni-

tion (ASR) systems have significant difficulty in 

noisier settings (such as those found in live sports 

broadcasts) (Wactlar et al., 1996).  While many 

researches have examined how to compensate for 

such noise using acoustic techniques, few have 

attempted to leverage information in the visual 

stream to improve speech recognition performance 

(for an exception see Murkherjee and Roy, 2003).   

In many types of video, however, visual context 

can provide valuable clues as to what has been 

said.  For example, in video of Major League 

Baseball games, the likelihood of the phrase “home 

run” increases dramatically when a home run has 

actually been hit.  This paper describes a method 

for incorporating such visual information in an 

ASR system for sports video.  The method is based 

on the use of grounded language models to repre-

sent the relationship between words and the non-

linguistic context to which they refer (Fleischman 

and Roy, 2007).   

Grounded language models are based on re-

search from cognitive science on grounded models 

of meaning. (for a review see Roy, 2005, and Roy 

and Reiter, 2005).  In such models, the meaning of 

a word is defined by its relationship to representa-

tions of the language users’ environment.  Thus, 

for a robot operating in a laboratory setting, words 

for colors and shapes may be grounded in the out-

puts of its computer vision system (Roy & Pent-

land, 2002); while for a simulated agent operating 

in a virtual world, words for actions and events 

may be mapped to representations of the agent’s 

plans or goals (Fleischman & Roy, 2005).   

This paper extends previous work on grounded 

models of meaning by learning a grounded lan-

guage model from naturalistic data collected from 

broadcast video of Major League Baseball games.  

A large corpus of unlabeled sports videos is col-

lected and paired with closed captioning transcrip-

tions of the announcers’ speech.
 1

  This corpus is 

used to train the grounded language model, which 

like traditional language models encode the prior 

probability of words for an ASR system.  Unlike 

traditional language models, however, grounded 

language models represent the probability of a 

word conditioned not only on the previous word(s), 

but also on features of the non-linguistic context in 

which the word was uttered.   

Our approach to learning grounded language 

models operates in two phases.  In the first phase, 

events that occur in the video are represented using 

hierarchical temporal pattern automatically mined  

                                                           
1 Closed captioning refers to human transcriptions of speech 

embedded in the video stream primarily for the hearing im-

paired.  Closed captioning is reasonably accurate (although not 

perfect) and available on some, but not all, video broadcasts. 
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Figure 1.  Representing events in video.  a) Events are represented by first abstracting the raw video into visual con-

text, camera motion, and audio context features.  b) Temporal data mining is then used to discover hierarchical tem-

poral patterns in the parallel streams of features.  c) Temporal patterns found significant in each iteration are stored 

in a codebook that is used to represent high level events in video. 

 

from low level features.  In the second phase, a 

conditional probability distribution is estimated 

that describes the probability that a word was ut-

tered given such event representations. In the fol-

lowing sections we describe these two aspects of 

our approach and evaluate the performance of our 

grounded language model on a speech recognition 

task using video highlights from Major League 

Baseball games.  Results indicate improved per-

formance using three metrics: perplexity, word 

error rate, and precision on an information retrieval 

task. 

2 Representing Events in Sports Video 

Recent work in video surveillance has demon-

strated the benefit of representing complex events 

as temporal relations between lower level sub-

events (Hongen et al., 2004).  Thus, to represent 

events in the sports domain, we would ideally first 

represent the basic sub events that occur in sports 

video (e.g., hitting, throwing, catching, running, 

etc.) and then build up complex events (such as 

home run) as a set of temporal relations between 

these basic events.  Unfortunately, due to the limi-

tations of computer vision techniques, reliably 

identifying such basic events in video is not feasi-

ble.  However, sports video does have characteris-

tics that can be exploited to effectively represent 

complex events. 

Like much broadcast video, sports video is 

highly produced, exploiting many different camera 

angles and a human director who selects which 

camera is most appropriate given what is happen-

ing on the field.  The styles that different directors 

employ are extremely consistent within a sport and 

make up a “language of film” which the machine 

can take advantage of in order to represent the 

events taking place in the video. 

Thus, even though it is not easy to automati-

cally identify a player hitting a ball in video, it is 

easy to detect features that correlate with hitting, 

e.g., when a scene focusing on the pitching mound 

immediately jumps to one zooming in on the field 

(see Figure 1).  Although these correlations are not 

perfect, experiments have shown that baseball 

events can be classified using such features 

(Fleischman et al., 2007).   

We exploit the language of film to represent 

events in sports video in two phases.  First, low 

level features that correlate with basic events in 

sports are extracted from the video stream.  Then, 

temporal data mining is used to find patterns 

within this low level event stream.   

2.1 Feature Extraction 

We extract three types of features: visual con-

text features, camera motion features, and audio 

context features.   
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Visual Context Features 

Visual context features encode general proper-

ties of the visual scene in a video segment.  Super-

vised classifiers are trained to identify these 

features, which are relatively simple to classify in 

comparison to high level events (like home runs) 

that require more training data and achieve lower 

accuracy.  The first step in classifying visual con-

text features is to segment the video into shots (or 

scenes) based on changes in the visual scene due to 

editing (e.g. jumping from a close up to a wide 

shot of the field).  Shot detection and segmentation 

is a well studied problem; in this work we use the 

method of Tardini et al. (2005).   

After the video is segmented into shots, indi-

vidual frames (called key frames) are selected and 

represented as a vector of low level features that 

describe the key frame’s color distribution, en-

tropy, etc. (see Fleischman and Roy, 2007 for the 

full list of low level features used).  The WEKA 

machine learning package is used to train a boosted 

decision tree to classify these frames into one of 

three categories: pitching-scene, field-scene, other 

(Witten and Frank, 2005).  Those shots whose key 

frames are classified as field-scenes are then sub-

categorized (using boosted decision trees) into one 

of the following categories: infield, outfield, wall, 

base, running, and misc.  Performance of these 

classification tasks is approximately 96% and 90% 

accuracy respectively. 

Camera Motion Features 

In addition to visual context features, we also 

examine the camera motion that occurs within a 

video.  Unlike visual context features, which pro-

vide information about the global situation that is 

being observed, camera motion features represent 

more precise information about the actions occur-

ring in a video.  The intuition here is that the cam-

era is a stand in for a viewer’s focus of attention.  

As actions occur in a video, the camera moves to 

follow it; this camera motion thus mirrors the ac-

tions themselves, providing informative features 

for event representation.   

Like shot boundary detection, detecting the mo-

tion of the camera in a video (i.e., the amount it 

pans left to right, tilts up and down, and zooms in 

and out) is a well-studied problem.  We use the 

system of Bouthemy et al. (1999) which computes 

the camera motion using the parameters of a two-

dimensional affine model to fit every pair of se-

quential frames in a video.  A 15 state 1
st
 order 

Hidden Markov Model, implemented with the 

Graphical Modeling Toolkit,
2
 then converts the 

output of the Bouthemy system into a stream of 

clustered characteristic camera motions (e.g. state 

12 clusters together motions of zooming in fast 

while panning slightly left). 

Audio Context 

The audio stream of a video can also provide use-

ful information for representing non-linguistic con-

text.  We use boosted decision trees to classify 

audio into segments of speech, excited_speech, 

cheering, and music.  Classification operates on a 

sequence of overlapping 30 ms frames extracted 

from the audio stream. For each frame, a feature 

vector is computed using, MFCCs (often used in 

speaker identification and speech detection tasks), 

as well as energy, the number of zero crossings, 

spectral entropy, and relative power between dif-

ferent frequency bands.  The classifier is applied to 

each frame, producing a sequence of class labels. 

These labels are then smoothed using a dynamic 

programming cost minimization algorithm (similar 

to those used in Hidden Markov Models).  Per-

formance of this system achieves between 78% 

and 94% accuracy.   

2.2 Temporal Pattern Mining 

Given a set of low level features that correlate with 

the basic events in sports, we can now focus on 

building up representations of complex events.  

Unlike previous work (Hongen et al., 2005) in 

which representations of the temporal relations 

between low level events are built up by hand, we 

employ temporal data mining techniques to auto-

matically discover such relations from a large cor-

pus of unannotated video. 

As described above, ideal basic events (such as 

hitting and catching) cannot be identified easily in 

sports video. By finding temporal patterns between 

audio, visual and camera motion features, how-

ever, we can produce representations that are 

highly correlated with sports events.  Importantly, 

such temporal patterns are not strictly sequential, 

but rather, are composed of features that can occur 

                                                           
2 http://ssli.ee.washington.edu/~bilmes/gmtk/ 
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in complex and varied temporal relations to each 

other.   

To find such patterns automatically, we follow 

previous work in video content classification in 

which temporal data mining techniques are used to 

discover event patterns within streams of lower 

level features.  The algorithm we use is fully unsu-

pervised and proceeds by examining the relations 

that occur between features in multiple streams 

within a moving time window.  Any two features 

that occur within this window must be in one of 

seven temporal relations with each other (e.g. be-

fore, during, etc.) (Allen, 1984).  The algorithm 

keeps track of how often each of these relations is 

observed, and after the entire video corpus is ana-

lyzed, uses chi-square analyses to determine which 

relations are significant.  The algorithm iterates 

through the data, and relations between individual 

features that are found significant in one iteration 

(e.g. [OVERLAP, field-scene, cheer]), are them-

selves treated as individual features in the next.  

This allows the system to build up higher-order 

nested relations in each iteration (e.g. [BEFORE, 

[OVERLAP, field-scene, cheer], field scene]]).   

The temporal patterns found significant in this 

way make up a codebook which can then be used 

as a basis for representing a video.  The term code-

book is often used in image analysis to describe a 

set of features (stored in the codebook) that are 

used to encode raw data (images or video).  Such 

codebooks are used to represent raw video using 

features that are more easily processed by the 

computer.  

Our framework follows a similar approach in 

which raw video is encoded (using a codebook of 

temporal patterns) as follows.  First, the raw video 

is abstracted into the visual context, camera mo-

tion, and audio context feature streams (as de-

scribed in Section 2.1).  These feature streams are 

then scanned, looking for any temporal patterns 

(and nested sub-patterns) that match those found in 

the codebook.  For each pattern, the duration for 

which it occurs in the feature streams is treated as 

the value of an element in the vector representation 

for that video.   

Thus, a video is represented as an n length vec-

tor, where n is the total number of temporal pat-

terns in the codebook.  The value of each element 

of this vector is the duration for which the pattern 

associated with that element was observed in the 

video.  So, if a pattern was not observed in a video 

at all, it would have a value of 0, while if it was 

observed for the entire length of the video, it would 

have a value equal to the number of frames present 

in that video.   

Given this method for representing the non-

linguistic context of a video, we can now examine 

how to model the relationship between such con-

text and the words used to describe it.  

3 Linguistic Mapping 

Modeling the relationship between words and non-

linguistic context assumes that the speech uttered 

in a video refers consistently (although not exclu-

sively) to the events being represented by the tem-

poral pattern features.  We model this relationship, 

much like traditional language models, using con-

ditional probability distributions.  Unlike tradi-

tional language models, however, our grounded 

language models condition the probability of a 

word not only on the word(s) uttered before it, but 

also on the temporal pattern features that describe 

the non-linguistic context in which it was uttered.  

We estimate these conditional distributions using a 

framework similar that used for training acoustic 

models in ASR and translation models in Machine 

Translation (MT). 

We generate a training corpus of utterances 

paired with representations of the non-linguistic 

context in which they were uttered.  The first step 

in generating this corpus is to generate the low 

level features described in Section 2.1 for each 

video in our training set.  We then segment each 

video into a set of independent events based on the 

visual context features we have extracted.  We fol-

low previous work in sports video processing 

(Gong et al., 2004) and define an event in a base-

ball video as any sequence of shots starting with a 

pitching-scene and continuing for four subsequent 

shots.  This definition follows from the fact that the 

vast majority of events in baseball start with a 

pitch and do not last longer than four shots.  For 

each of these events in our corpus, a temporal pat-

tern feature vector is generated as described in sec-

tion 2.2.  These events are then paired with all the 

words from the closed captioning transcription that 

occur during each event (plus or minus 10 sec-

onds).  Because these transcriptions are not neces-

sarily time synched with the audio, we use the 

method described in Hauptmann and Witbrock 
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(1998) to align the closed captioning to the an-

nouncers’ speech.   

Previous work has examined applying models 

often used in MT to the paired corpus described 

above (Fleischman and Roy, 2006).  Recent work 

in automatic image annotation (Barnard et al., 

2003; Blei and Jordan, 2003) and natural language 

processing (Steyvers et al., 2004), however, have 

demonstrated the advantages of using hierarchical 

Bayesian models for related tasks.  In this work we 

follow closely the Author-Topic (AT) model (Stey-

vers et al., 2004) which is a generalization of La-

tent Dirichlet Allocation (LDA) (Blei et al., 2005).
3
   

LDA is a technique that was developed to 

model the distribution of topics discussed in a large 

corpus of documents.  The model assumes that 

every document is made up of a mixture of topics, 

and that each word in a document is generated 

from a probability distribution associated with one 

of those topics.  The AT model generalizes LDA, 

saying that the mixture of topics is not dependent 

on the document itself, but rather on the authors 

who wrote it.  According to this model, for each 

word (or phrase) in a document, an author is cho-

sen uniformly from the set of the authors of the 

document.  Then, a topic is chosen from a distribu-

tion of topics associated with that particular author.  

Finally, the word is generated from the distribution 

associated with that chosen topic.  We can express 

the probability of the words in a document (W) 

given its authors (A) as: 

∏ ∑∑
∈ ∈ ∈

=
Wm Ax Tzd

xzpzmp
A

AWp )|()|(
1

)|(  (1) 

where T is the set of latent topics that are induced 

given a large set of training data.   

We use the AT model to estimate our grounded 

language model by making an analogy between 

documents and events in video.  In our framework, 

the words in a document correspond to the words 

in the closed captioning transcript associated with 

an event.  The authors of a document correspond to 

the temporal patterns representing the non- 
 

linguistic context of that event.  We modify the AT 

model slightly, such that, instead of selecting from 

                                                           
3 In the discussion that follows, we describe a method for es-

timating unigram grounded language models.  Estimating 

bigram and trigram models can be done by processing on 

word pairs or triples, and performing normalization on the 

resulting conditional distributions. 

a uniform distribution (as is done with authors of 

documents), we select patterns from a multinomial 

distribution based upon the duration of the pattern.  

The intuition here is that patterns that occur for a 

longer duration are more salient and thus, should 

be given greater weight in the generative process.  

We can now rewrite (1) to give the probability of 

words during an event (W) given the vector of ob-

served temporal patterns (P) as: 

∏∑∑
∈ ∈ ∈

=
Wm Px Tz

xpxzpzmpPWp )()|()|()|(  (2) 

In the experiments described below we follow 

Steyver et al., (2004) and train our AT model using 

Gibbs sampling, a Markov Chain Monte Carlo 

technique for obtaining parameter estimates.  We 

run the sampler on a single chain for 200 iterations.  

We set the number of topics to 15, and normalize 

the pattern durations first by individual pattern 

across all events, and then for all patterns within an 

event.  The resulting parameter estimates are 

smoothed using a simple add N smoothing tech-

nique, where N=1 for the word by topic counts and 

N=.01 for the pattern by topic counts.   

4 Evaluation 

In order to evaluate our grounded language model-

ing approach, a parallel data set of 99 Major 

League Baseball games with corresponding closed 

captioning transcripts was recorded from live tele-

vision.  These games represent data totaling ap-

proximately 275 hours and 20,000 distinct events 

from 25 teams in 23 stadiums, broadcast on five 

different television stations.  From this set, six 

games were held out for testing (15 hours, 1200 

events, nine teams, four stations).  From this test 

set, baseball highlights (i.e., events which termi-

nate with the player either out or safe) were hand 

annotated for use in evaluation, and manually tran-

scribed in order to get clean text transcriptions for 

gold standard comparisons.  Of the 1200 events in 

the test set, 237 were highlights with a total word 

count of 12,626 (vocabulary of 1800 words). 

The remaining 93 unlabeled games are used to 

train unigram, bigram, and trigram grounded lan-

guage models.  Only unigrams, bigrams, and tri-

grams that are not proper names, appear greater 

than three times, and are not composed only of 

stop words were used.  These grounded language 

models are then combined in a backoff strategy 
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with traditional unigram, bigram, and trigram lan-

guage models generated from a combination of the 

closed captioning transcripts of all training games 

and data from the switchboard corpus (see below).  

This backoff is necessary to account for the words 

not included in the grounded language model itself 

(i.e. stop words, proper names, low frequency 

words).  The traditional text-only language models 

(which are also used below as baseline compari-

sons) are generated with the SRI language model-

ing toolkit (Stolcke, 2002) using Chen and 

Goodman's modified Kneser-Ney discounting and 

interpolation (Chen and Goodman, 1998).  The 

backoff strategy we employ here is very simple: if 

the ngram appears in the GLM then it is used, oth-

erwise the traditional LM is used.  In future work 

we will examine more complex backoff strategies 

(Hsu, in review). 

We evaluate our grounded language modeling 

approach using 3 metrics: perplexity, word error 

rate, and precision on an information retrieval task. 

4.1 Perplexity 

Perplexity is an information theoretic measure of 

how well a model predicts a held out test set.  We 

use perplexity to compare our grounded language 

model to two baseline language models: a lan-

guage model generated from the switchboard cor-

pus, a commonly used corpus of spontaneous 

speech in the telephony domain (3.65M words; 27k 

vocab); and a language model that interpolates 

(with equal weight given to both) between the 

switchboard model and a language model trained 

only on the baseball-domain closed captioning 

(1.65M words; 17k vocab).  The results of calculat-

ing perplexity on the test set highlights for these 

three models is presented in Table 1 (lower is bet-

ter). 

Not surprisingly, the switchboard language 

model performs far worse than both the interpo-

lated text baseline and the grounded language 

model.  This is due to the large discrepancy be-

tween both the style and vocabulary of language 

about sports compared to the domain of telephony 

sampled by the switchboard corpus.  Of more in-

terest is the decrease in perplexity seen when using 

the grounded language model compared to the in-

terpolated model.  Note that these two language 

models are generated using the same speech tran-

scriptions, i.e. the closed captioning from the train-

ing games and the switchboard corpus.  However, 

whereas the baseline model remains the same for 

each of the 237 test highlights, the grounded lan-

guage model generates different word distributions 

for each highlight depending on the event features 

extracted from the highlight video. 

  
 Switchboard Interpolated 

(Switch+CC) 

Grounded 

ppl 1404 145.27 83.88 
 

Table 1.  Perplexity measures for three different lan-

guage models on a held out test set of baseball high-

lights (12,626 words).  We compare the grounded 

language model to two text based language models: one 

trained on the switchboard corpus alone; and interpo-

lated with one trained on closed captioning transcrip-

tions of baseball video.  

4.2 Word Accuracy and Error Rate 

Word error rate (WER) is a normalized measure of 

the number of word insertions, substitutions, and 

deletions required to transform the output tran-

scription of an ASR system to a human generated 

gold standard transcription of the same utterance.  

Word accuracy is simply the number of words in 

the gold standard that they system correctly recog-

nized.  Unlike perplexity which only evaluates the 

performance of language models, examining word 

accuracy and error rate requires running an entire 

ASR system, i.e. both the language and acoustic 

models.   

We use the Sphinx system to train baseball specific 

acoustic models using parallel acoustic/text data 

automatically mined from our training set.  Follow-

ing Jang and Hauptman (1999), we use an off the 

shelf acoustic model (the hub4 model) to generate 

an extremely noisy speech transcript of each game 

in our training set, and use dynamic programming 

to align these noisy outputs to the closed caption-

ing stream for those same games.  Given these two 

transcriptions, we then generate a paired acous-

tic/text corpus by sampling the audio at the time 

codes where the ASR transcription matches the 

closed captioning transcription.   

For example, if the ASR output contains the 

term sequence “… and farther home run for David 

forty says…” and the closed captioning contains 

the sequence “…another home run for David 

Ortiz…,” the matched phrase “home run for 

David” is assumed a correct transcription for the 

audio at the time codes given by the ASR system.  

Only looking at sequences of three words or more,  
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Figure 3.  Word accuracy and error rates for ASR sys-

tems using a grounded language model, a text based 

language model trained on the switchboard corpus, and 

the switchboard model interpolated with a text based 

model trained on baseball closed captions. 

 

we extract approximately 18 hours of clean paired 

data from our 275 hour training corpus.  A con-

tinuous acoustic model with 8 gaussians and 6000 

ties states is trained on this data using the Sphinx 

speech recognizer.
4
 

Figure 3 shows the WERs and accuracy for 

three ASR systems run using the Sphinx decoder 

with the acoustic model described above and either 

the grounded language model or the two baseline 

models described in section 4.1.  Note that per-

formance for all of these systems is very poor due 

to limited acoustic data and the large amount of 

background crowd noise present in sports video 

(and particularly in sports highlights).  Even with 

this noise, however, results indicate that the word 

accuracy and error rates when using the grounded 

language model is significantly better than both the 

switchboard model (absolute WER reduction of 

13%; absolute accuracy increase of 15.2%) and the 

switchboard interpolated with the baseball specific 

text based language model (absolute WER reduc-

tion of 3.7%; absolute accuracy increase of 5.9%).   

                                                           
4 http://cmusphinx.sourceforge.net/html/cmusphinx.php 

Drawing conclusions about the usefulness of 

grounded language models using word accuracy or 

error rate alone is difficult.  As it is defined, these 

measures penalizes a system that mistakes “a” for 

“uh” as much as one that mistakes “run” for “rum.”  

When using ASR to support multimedia applica-

tions (such as search), though, such substitutions 

are not of equal importance.  Further, while visual 

information may be useful for distinguishing the 

latter error, it is unlikely to assist with the former.  

Thus, in the next section we examine an extrinsic 

evaluation in which grounded language models are 

judged not directly on their effect on word accu-

racy or error rate, but based on their ability to sup-

port video information retrieval.  

4.3 Precision of Information Retrieval  

One of the most commonly used applications of 

ASR for video is to support information retrieval 

(IR).  Such video IR systems often use speech tran-

scriptions to index segments of video in much the 

same way that words are used to index text docu-

ments (Wactlar et al., 1996).  For example, in the 

domain of baseball, if a video IR system were is-

sued the query “home run,” it would typically re-

turn a set of video clips by searching its database 

for events in which someone uttered the phrase 

“home run.”  Because such systems rely on ASR 

output to search video, the performance of a video 

IR system gives an indirect evaluation of the 

ASR’s quality.  Further, unlike the case with word 

accuracy or error rate, such evaluations highlight a 

systems ability to recognize the more relevant con-

tent words without being distracted by the more 

common stop words. 

Our metric for evaluation is the precision with 

which baseball highlights are returned in a video 

IR system.  We examine three systems: one that 

uses ASR with the grounded language model, a 

baseline system that uses ASR with the text only 

interpolated language model, and finally a system 

that uses human produced closed caption transcrip-

tions to index events. 

For each system, all 1200 events from the test 

set (not just the highlights) are indexed.  Queries 

are generated artificially using a method similar to 

Berger and Lafferty (1999) and used in Fleischman 

and Roy (2007).  First, each highlight is labeled 

with the event’s type (e.g. fly ball), the event’s lo-

cation (e.g. left field) and the event’s result (e.g. 

double play): 13 labels total.  Log likelihood ratios 
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are then used to find the phrases (unigram, trigram, 

and bigram) most indicative of each label (e.g. “fly 

ball” for category fly ball).  For each label, the 

three most indicative phrases are issued as queries 

to the system, which ranks its results using the lan-

guage modeling approach of Ponte and Croft 

(1998).  Precision is measured on how many of the 

top five returned events are of the correct category.   

Figure 4 shows the precision of the video IR 

systems based on ASR with the grounded language 

model, ASR with the text-only interpolated lan-

guage model, and closed captioning transcriptions.  

As with our previous evaluations, the IR results 

show that the system using ASR with the grounded 

language model performed better than the one us-

ing ASR with the text-only language model (5.1% 

absolute improvement).  More notably, though, 

Figure 4 shows that the system using the grounded 

language model performed better than the system 

using the hand generated closed captioning tran-

scriptions (4.6% absolute improvement).  Although 

this is somewhat counterintuitive given that hand 

transcriptions are typically considered gold stan-

dards, these results follow from a limitation of us-

ing text-based methods to index video.  

Unlike the case with text documents, the occur-

rence of a query term in a video is often not 

enough to assume the video’s relevance to that 

query.  For example, when searching through 

video of baseball games, returning all clips in 

which the phrase “home run” occurs, results pri-

marily in video of events where a home run does 

not actually occur.  This follows from the fact that 

in sports, as in life, people often talk not about 

what is currently happening, but rather, they talk 

about what did, might, or will happen in the future.   

By taking into account non-linguistic context 

during speech recognition, the grounded language 

model system indirectly circumvents some of these 

false positive results.  This follows from the fact 

that an effect of using the grounded language 

model is that when an announcer utters a phrase 

(e.g., “fly ball”), the system is more likely to rec-

ognize that phrase correctly if the event it refers to 

is actually occurring (e.g. if someone actually hit a 

fly ball).  Because the grounded language model 

system is biased to recognize phrases that describe 

what is currently happening, it returns fewer false 

positives and gets higher precision.  
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Figure 4. Precision of top five results of a video IR sys-

tem based on speech transcriptions.  Three different 

transcriptions are compared: ASR-LM uses ASR with a 

text-only interpolated language model (trained on base-

ball closed captioning and the switchboard corpus); 

ASR-GLM uses ASR with a grounded language model; 

CC uses human generated closed captioning transcrip-

tions (i.e., no ASR). 

5 Conclusions 

We have described a method for improving speech 

recognition in video.  The method uses grounded 

language modeling, an extension of tradition lan-

guage modeling in which the probability of a word 

is conditioned not only on the previous word(s) but 

also on the non-linguistic context in which the 

word is uttered.  Context is represented using hier-

archical temporal patterns of low level features 

which are mined automatically from a large unla-

beled video corpus.  Hierarchical Bayesian models 

are then used to map these representations to 

words.  Initial results show grounded language 

models improve performance on measures of per-

plexity, word accuracy and error rate, and preci-

sion on an information retrieval task. 

In future work, we will examine the ability of 

grounded language models to improve perform-

ance for other natural language tasks that exploit 

text based language models, such as Machine 

Translation.  Also, we are examining extending 

this approach to other sports domains such as 

American football.  In theory, however, our ap-

proach is applicable to any domain in which there 

is discussion of the here-and-now (e.g., cooking 

shows, etc.).  In future work, we will examine the 

strengths and limitations of grounded language 

modeling in these domains. 
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