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Abstract

Most of previous approaches to automatic
prosodic event detection are based on su-
pervised learning, relying on the avail-
ability of a corpus that is annotated with
the prosodic labels of interest in order to
train the classification models. However,
creating such resources is an expensive
and time-consuming task. In this paper,
we exploit semi-supervised learning with
the co-training algorithm for automatic de-
tection of coarse level representation of
prosodic events such as pitch accents, in-
tonational phrase boundaries, and break
indices. We propose a confidence-based
method to assign labels to unlabeled data
and demonstrate improved results using
this method compared to the widely used
agreement-based method. In addition, we
examine various informative sample selec-
tion methods. In our experiments on the
Boston University radio news corpus, us-
ing only a small amount of the labeled data
as the initial training set, our proposed la-
beling method combined with most confi-
dence sample selection can effectively use
unlabeled data to improve performance
and finally reach performance closer to
that of the supervised method using all the
training data.

1 Introduction

Prosody represents suprasegmental information in
speech since it normally extends over more than
one phoneme segment. Prosodic phenomena man-
ifest themselves in speech in different ways, in-
cluding changes in relative intensity to emphasize
specific words or syllables, variations of the fun-
damental frequency range and contour, and subtle
timing variations, such as syllable lengthening and

insertion of pause. In spoken utterances, speakers
use prosody to convey emphasis, intent, attitude,
and emotion. These are important cues to aid the
listener for interpretation of speech. Prosody also
plays an important role in automatic spoken lan-
guage processing tasks, such as speech act detec-
tion and natural speech synthesis, because it in-
cludes aspect of higher level information that is
not completely revealed by segmental acoustics or
lexical information.

To represent prosodic events for the categorical
annotation schemes, one of the most popular label-
ing schemes is the Tones and Break Indices (ToBI)
framework (Silverman et al., 1992). The most im-
portant prosodic phenomena captured within this
framework include pitch accents (or prominence)
and prosodic phrase boundaries. Within the ToBI
framework, prosodic phrasing refers to the per-
ceived grouping of words in an utterance, and
accent refers to the greater perceived strength or
emphasis of some syllables in a phrase. Cor-
pora annotated with prosody information can be
used for speech analysis and to learn the relation-
ship between prosodic events and lexical, syntac-
tic and semantic structure of the utterance. How-
ever, it is very expensive and time-consuming to
perform prosody labeling manually. Therefore,
automatic labeling of prosodic events is an attrac-
tive alternative that has received attention over the
past decades. In addition, automatically detecting
prosodic events also benefits many other speech
understanding tasks.

Many previous efforts on prosodic event de-
tection were supervised learning approaches that
used acoustic, lexical, and syntactic cues. How-
ever, the major drawback with these methods is
that they require a hand-labeled training corpus
and depend on specific corpus used for training.
Limited research has been conducted using unsu-
pervised and semi-supervised methods. In this pa-
per, we exploit semi-supervised learning with the
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Figure 1: An example of ToBI annotation on a sentence“Hennessy will be a hard act to follow.”

co-training algorithm (Blum and Mitchell, 1998)
for automatic prosodic event labeling. Two dif-
ferent views according to acoustic and lexical-
syntactic knowledge sources are used in the co-
training framework. We propose a confidence-
based method to assign labels to unlabeled data
in training iterations and evaluate its performance
combined with different informative sample se-
lection methods. Our experiments on the Boston
Radio News corpus show that the use of unla-
beled data can lead to significant improvement
of prosodic event detection compared to using
the original small training set, and that the semi-
supervised learning result is comparable with su-
pervised learning with similar amount of training
data.

The remainder of this paper is organized as fol-
lows. In the next section, we provide details of
the corpus and the prosodic event detection tasks.
Section 3 reviews previous work briefly. In Sec-
tion 4, we describe the classification method for
prosodic event detection, including the acoustic
and syntactic prosodic models, and the features
used. Section 5 introduces the co-training algo-
rithm we used. Section 6 presents our experiments
and results. The final section gives a brief sum-
mary along with future directions.

2 Corpus and tasks

In this paper, our experiments were carried out
on the Boston University Radio News Corpus
(BU) (Ostendorf et al., 2003) which consists
of broadcast news style read speech and has
ToBI-style prosodic annotations for a part of the
data. The corpus is annotated with orthographic
transcription, automatically generated and hand-
corrected part-of-speech (POS) tags, and auto-
matic phone alignments.

The main prosodic events that we are concerned
to detect automatically in this paper are phrasing

and accent (or prominence). Prosodic phrasing
refers to the perceived grouping of words in an ut-
terance, and prominence refers to the greater per-
ceived strength or emphasis of some syllables in
a phrase. In the ToBI framework, the pitch accent
tones (*) are marked at every accented syllable and
have five types according to pitch contour: H*, L*,
L*+H, L+H*, H+!H*. The phrase boundary tones
are marked at every intermediate phrase boundary
(L-, H-) or intonational phrase boundary (L-L%,
L-H%, H-H%, H-L%) at certain word boundaries.
There are also the break indices at every word
boundary which range in value from 0 through
4, where 4 means intonational phrase boundary, 3
means intermediate phrase boundary, and a value
under 3 means phrase-medial word boundary. Fig-
ure 1 shows a ToBI annotation example for a sen-
tence“Hennessy will be a hard act to follow.”The
first and second tiers show the orthographic infor-
mation such as words and syllables of the utter-
ance. The third tier shows the accents and phrase
boundary tones. The accent tone is located on each
accented syllable, such as the first syllable of word
“Hennessy.” The boundary tone is marked on ev-
ery final syllable if there is a prosodic boundary.
For example, there are intermediate phrase bound-
aries after words“Hennessy”and“act” , and there
is an intonational phrase boundary after word“fol-
low.” The fourth tier shows the break indices at the
end of every word.

The detailed representation of prosodic events
in the ToBI framework creates a serious sparse
data problem for automatic prosody detection.
This problem can be alleviated by grouping ToBI
labels into coarse categories, such as presence or
absence of pitch accents and phrasal tones. This
also significantly reduces ambiguity of the task. In
this paper, we thus use coarse representation (pres-
ence versus absence) for three prosodic event de-
tection tasks:
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• Pitch accents: accent mark (*) means pres-
ence.

• Intonational phrase boundaries (IPB): all of
the IPB tones (%) are grouped into one cate-
gory.

• Break indices: value 3 and 4 are grouped to-
gether to represent that there is a break. This
task is equivalent to detecting the presence of
intermediate and intonational phrase bound-
aries.

These three tasks are binary classification prob-
lems. Similar setup has also been used in other
previous work.

3 Previous work

Many previous efforts on prosodic event detec-
tion used supervised learning approaches. In the
work by Wightman and Ostendorf (1994), binary
accent, IPB, and break index were assigned to
syllables based on posterior probabilities com-
puted from acoustic evidence using decision trees,
combined with a bigram model of accent and
boundary patterns. Their method achieved an
accuracy of 84% for accent, 71% for IPB, and
84% for break index detection at the syllable
level. Chen et al. (2004) used a Gaussian mix-
ture model for acoustic-prosodic information and
neural network based syntactic-prosodic model
and achieved pitch accent detection accuracy of
84% and IPB detection accuracy of 90% at the
word level. The experiments of Ananthakrish-
nan and Narayanan (2008) with neural network
based acoustic-prosodic model and a factored n-
gram syntactic model reported 87% accuracy on
accent and break index detection at the syllable
level. The work of Sridhar et al. (2008) using a
maximum entropy model achieved accent and IPB
detection accuracies of 86% and 93% on the word
level.

Limited research has been done in prosodic
detection using unsupervised or semi-supervised
methods. Ananthakrishnan and Narayanan (2006)
proposed an unsupervised algorithm for prosodic
event detection. This algorithm was based on clus-
tering techniques to make use of acoustic and syn-
tactic cues and achieved accent and IPB detec-
tion accuracies of 77.8% and 88.5%, compared
with the accuracies of 86.5% and 91.6% with su-
pervised methods. Similarly, Levow (2006) tried

clustering based unsupervised approach on ac-
cent detection with only acoustic evidence and
reported accuracy of 78.4% for accent detection
compared with 80.1% using supervised learning.
She also exploited a semi-supervised approach us-
ing Laplacian SVM classification on a small set of
examples. This approach achieved 81.5%, com-
pared to 84% accuracy for accent detection in a
fully supervised fashion.

Since Blum and Mitchell (1998) proposed co-
training, it has received a lot of attention in the re-
search community. This multi-view setting applies
well to learning problems that have a natural way
to divide their features into subsets, each of which
are sufficient to learn the target concept. Theo-
retical and empirical analysis has been performed
for the effectiveness of co-training such as Blum
and Mitchell (1998), Goldman and Zhou (2000),
Nigam and Ghani (2000), and Dasuta et al. (2001).
More recently, researchers have begun to explore
ways of combing ideas from sample selection with
that of co-training. Steedman et al. (2003) ap-
plied co-training method to statistical parsing and
introduced sample selection heuristics. Clark et
al. (2003) and Wang et al. (2007) applied co-
training method in POS tagging using agreement-
based selection strategy. Co-testing (Muslea et
al., 2000), one of active learning approaches, has
a similar spirit. Like co-training, it consists of
two classifiers with redundant views and compares
their outputs for an unlabeled example. If they
disagree, then the example is considered as a con-
tention point, and therefore a good candidate for
human labeling.

In this paper, we apply co-training algorithm
to automatic prosodic event detection and propose
methods to better select samples to improve semi-
supervised learning performance for this task.

4 Prosodic event detection method

We model the prosody detection problem as a clas-
sification task. We separately develop acoustic-
prosodic and syntactic-prosodic models accord-
ing to information sources and then combine the
two models. Our previous supervised learning ap-
proach (Jeon and Liu, 2009) showed that a com-
bined model using Neural Network (NN) classifier
for acoustic-prosodic evidence and Support Vector
Machine (SVM) classifier for syntactic-prosodic
evidence performed better than other classifiers.
We therefore use NN and SVM in this study. Note
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that our feature extraction is performed at the syl-
lable level. This is straightforward for accent de-
tection since stress is defined associated with syl-
lables. In the case of IPB and break index detec-
tion, we use only the features from the final syl-
lable of a word since those events are associated
with word boundaries.

4.1 The acoustic-prosodic model

The most likely sequence of prosodic eventsP ∗ =
{p∗

1
, . . . , p∗

n} given the sequence of acoustic evi-
dencesA = {a1, . . . , an} can be found as follow-
ing:

P ∗ = arg max
P

p(P |A)

≈ arg max
P

n∏

i=1

p(pi|ai) (1)

whereai = {a1

i
, . . . , at

i
} is the acoustic feature

vector corresponding to a syllable. Note that this
assumes that the prosodic events are independent
and they are only dependent on the acoustic obser-
vations in the corresponding locations.

The primary acoustic cues for prosodic events
are pitch, energy and duration. In order to reduce
the effect by both inter-speaker and intra-speaker
variation, both pitch and energy values were nor-
malized (z-value) with utterance specific means
and variances. The acoustic features used in our
experiments are listed below. Again, all of the fea-
tures are computed for a syllable.

• Pitch range (4 features): maximum pitch,
minimum pitch, mean pitch, and pitch range
(difference between maximum and minimum
pitch).

• Pitch slope (5 features): first pitch slope, last
pitch slope, maximum plus pitch slope, max-
imum minus pitch slope, and the number of
changes in the pitch slope patterns.

• Energy range (4 features): maximum en-
ergy, minimum energy, mean energy, and
energy range (difference between maximum
and minimum energy).

• Duration (3 features): normalized vowel du-
ration, pause duration after the word final syl-
lable, and the ratio of vowel durations be-
tween this syllable and the next syllable.

Among the duration features, the pause dura-
tion and the ratio of vowel durations are only used
to detect IPB and break index, not for accent de-
tection.

4.2 The syntactic-prosodic model

The prosodic eventsP ∗ given the sequence of lex-
ical and syntactic evidencesS = {s1, . . . , sn} can
be found as following:

P ∗ = arg max
P

p(P |S)

≈ arg max
P

n∏

i=1

p(pi|φ(si)) (2)

whereφ(si) is chosen such that it contains lexi-
cal and syntactic evidence from a fixed window of
syllables surrounding locationi.

There is a very strong correlation between the
prosodic events in an utterance and its lexical and
syntactic structure. Previous studies have shown
that for pitch accent detection, the lexical features
such as the canonical stress patterns from the pro-
nunciation dictionary perform better than the syn-
tactic features, while for IPB and break index de-
tection, the syntactic features such as POS work
better than the lexical features. We use different
feature types for each task and the detailed fea-
tures are as follows:

• Accent detection: syllable identity, lexical
stress (exist or not), word boundary informa-
tion (boundary or not), and POS tag. We
also include syllable identity, lexical stress,
and word boundary features from the previ-
ous and next context window.

• IPB and Break index detection: POS tag, the
ratio of syntactic phrases the word initiates,
and the ratio of syntactic phrases the word
terminates. All of these features from the pre-
vious and next context windows are also in-
cluded.

4.3 The combined model

The two models above can be coupled as a classi-
fier for prosodic event detection. If we assume that
the acoustic observations are conditionally inde-
pendent of the syntactic features given the prosody
labels, the task of prosodic detection is to find the
optimal sequenceP ∗ as follows:

P ∗ = arg max
P

p(P |A, S)
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≈ arg max
P

p(P |A)p(P |S)

≈ arg max
P

n∏

i=1

p(pi|ai)
λp(pi|φ(si)) (3)

whereλ is a parameter that can be used to adjust
the weighting between syntactic and the acoustic
model. In our experiments, the value ofλ is esti-
mated based on development data.

5 Co-training strategy for prosodic event
detection

Co-training (Blum and Mitchell, 1998) is a semi-
supervised multi-view algorithm that uses the ini-
tial training set to learn a (weak) classifier in each
view. Then each classifier is applied to all the
unlabeled examples. Those examples that each
classifier makes the most confident predictions are
selected and labeled with the estimated class la-
bels and added to the training set. Based on the
new training set, a new classifier is learned in each
view, and the whole process is repeated for some
iterations. At the end, a final hypothesis is cre-
ated by combining the predictions of the classifiers
learned in each view.

As described in Section 4, we use two classi-
fiers for the prosodic event detection task based
on two different information sources: one is the
acoustic evidence extracted from the speech signal
of an utterance; the other is the lexical and syn-
tactic evidence such as syllables, words, POS tags
and phrasal boundary information. These are two
different views for prosodic event detection and fit
the co-training framework.

The general co-training algorithm we used is
described in Algorithm 1. Given a setL of labeled
data and a setU of unlabeled data, the algorithm
first creates a smaller poolU′ containingu unla-
beled data. It then iterates in the following proce-
dure. First, we useL to train two distinct classi-
fiers: the acoustic-prosodic classifierh1, and the
syntactic classifierh2. These two classifiers are
used to examine the unlabeled setU′ and assign
“possible” labels. Then we select some samples
to add toL. Finally, the poolU′ is recreated from
U at random. This iteration continues until reach-
ing the defined number of iterations orU is empty.

The main issue of co-training is to select train-
ing samples for next iteration so as to minimize
noise and maximize training utility. There are two
issues: (1) the accurate self-labeling method for
unlabeled data and (2) effective heuristics to se-

Algorithm 1 General co-training algorithm.
Given a setL of labeled training data and a set
U of unlabeled data
Randomly selectU′ from U, |U′|=u
while iteration< k do

UseL to train classifiersh1andh2
Apply h1 andh2 to assign labels for all ex-
amples inU′

Selectn self-labeled samples and add toL
Remove thesen samples fromU
RecreateU′ by choosingu instances ran-
domly fromU

end while

lect more informative examples. We investigate
different approaches to address these issues for
the prosodic event detection task. The first is-
sue is how to assign possible labels accurately.
The general method is to let the two classifiers
predict the class for a given sample, and if they
agree, the hypothesized label is used. However,
when this agreement-based approach is used for
prosodic event detection, we notice that there is
not only difference in the labeling accuracy be-
tween positive and negative samples, but also an
imbalance of the self-labeled positive and negative
examples (details in Section 6). Therefore we be-
lieve that using the hard decisions from the two
classifiers along with the agreement-based rule is
not enough to label the unlabeled samples. To ad-
dress this problem, we propose an approximated
confidence measure based on the combined classi-
fier (Equation 3). First, we take a squared root of
the classifier’s posterior probabilities for the two
classes, denoted asscore(pos) and score(neg),
respectively. Our proposed confidence is the dis-
tance between these two scores. For example, if
the classifier’s hypothesized label is positive, then:

Positive confidence=score(pos)-score(neg)
Similarly if the classifier’s hypothesis is negative,
we calculate a negative confidence:

Negative confidence=score(neg)-score(pos)
Then we apply different thresholds of confi-

dence level for positive and negative labeling. The
thresholds are chosen based on the accuracy distri-
bution obtained on the labeled development data
and are reestimated at every iteration. Figure 2
shows the accuracy distribution for accent detec-
tion according to different confidence levels in the
first iteration. In Figure 2, if we choose 70% label-
ing accuracy, the positive confidence level is about
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Figure 2: Approximated confidence level and la-
beling accuracy on accent detection task.

0.1 and the negative confidence level is about 0.8.
In our confidence-based approach, the samples
with a confidence level higher than these thresh-
olds are assigned with the classifier’s hypothesized
labels, and the other samples are disregarded.

The second problem in co-training is how to
select informative samples. Active learning ap-
proaches, such as Muslea et al. (2000), can gener-
ally select more informative samples, for example,
samples for which two classifiers disagree (since
one of two classifiers is wrong) and ask for human
labels. Co-training approaches cannot, however,
use this selection method since there is a risk to
label the disagreed samples. Usually co-training
selects samples for which two classifiers have the
same prediction but high difference in their con-
fidence measures. Based on this idea, we applied
three sampling strategies on top of our confidence-
based labeling method:

• Random selection: randomly select samples
from those that the two classifiers have dif-
ferent posterior probabilities.

• Most confident selection: select samples that
have the highest posterior probability based
on one classifier, and at the same time there
is certain posterior probability difference be-
tween the two classifiers.

• Most different selection: select samples that
have the most difference between the two
classifiers’ posterior probabilities.

The first strategy is appropriate for base classi-
fiers that lack the capability of estimating the pos-
terior probability of their predictions. The second
is appropriate for base classifiers that have high
classification accuracy and also with high poste-
rior probability. The last one is also appropriate
for accurate classifiers and expected to converge

utter. word syll Speaker

Test Set 102 5,448 8,962 f1a, m1b

Development Set 20 1,356 2,275 f2b, f3b

Labeled setL 5 347 573 m2b, m3b

Unlabeled setU 1,027 77,207 129,305 m4b

Table 1: Training and test sets.

faster since big mistakes of one of the two classi-
fiers can be fixed. These sample selection strate-
gies share some similarity with those in previous
work (Steedman et al., 2003).

6 Experiments and results

Our goal is to determine whether the co-training
algorithm described above could successfully use
the unlabeled data for prosodic event detection. In
our experiment, 268 ToBI labeled utterances and
886 unlabeled utterances in BU corpus were used.
Among labeled data, 102 utterances of allf1a and
m1b speakers are used for testing, 20 utterances
randomly chosen fromf2b, f3b, m2b, m3b, and
m4bare used as development set to optimize pa-
rameters such asλ and confidence level thresh-
old, 5 utterances are used as the initial training
setL, and the rest of the data is used as unlabeled
set U, which has 1027 unlabeled utterances (we
removed the human labels for co-training exper-
iments). The detailed training and test setting is
shown in Table 1.

First of all, we compare the learning curves us-
ing our proposed confidence-based method to as-
sign possible labels with the simple agreement-
based random selection method. We expect that if
self-labeling is accurate, adding new samples ran-
domly drawn from these self-labeled data gener-
ally should not make performance worse. For this
experiment, in every iteration, we randomly se-
lect the self-labeled samples that have at least 0.1
difference between two classifiers’ posterior prob-
abilities. The number of new samples added to
training is 5% of the size of the previous training
data. Figure 3 shows the learning curves for accent
detection. The number of samples in the x-axis
is the number of syllables. The F-measure score
using the initial training data is 0.69. The dark
solid line in Figure 3 is the learning curve of the
supervised method when varying the size of the
training data. Compared with supervised method,
our proposed relative confidence-based labeling
method shows better performance when there is
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Figure 3: The learning curve of agreement-based
and our proposed confidence-based random selec-
tion methods for accent detection.

Confidence Agreement

Accent
detection

% of P samples 47% 38%

P sample error 0.17 0.09

N sample error 0.12 0.22

IPB
detection

% of P samples 46% 19%

P sample error 0.12 0.01

N sample error 0.18 0.53

Break
detection

% of P samples 50% 25%

P sample error 0.15 0.03

N sample error 0.17 0.42

Table 2: Percentage of positive samples, and
averaged error rate for positive (P) and nega-
tive (N) samples for the first 20 iterations using
the agreement-based and our confidence labeling
methods.

less data, but after some iteration, the performance
is saturated earlier. However, the agreement-based
method does not yield any performance gain, in-
stead, its performance is much worse after some
iteration. The other two prosodic event detection
tasks also show similar patterns.

To analyze the reason for this performance
degradation using the agreement-based method,
we compare the labels of the newly added samples
in random selection with the reference annotation.
Table 2 shows the percentage of the positive sam-
ples added for the first 20 iterations, and the av-
erage labeling error rate of those samples for the
self-labeled positive and negative classes for two
methods. The agreement-based random selection
added more negative samples that also have higher
error rate than the positive samples. Adding these
samples has a negative impact on the classifier’s
performance. In contrast, our confidence-based
approach balances the number of positive and neg-
ative samples and significantly reduces the error
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Figure 4: The learning curve of 3 sample selection
methods for accent detection.

rates for the negative samples as well, thus leading
to performance improvement.

Next we evaluate the efficacy of the three sam-
ple selection methods described in Section 5,
namely, random, most confident, and most dif-
ferent selections. Figure 4 shows the learning
curves for the three selection methods for accent
detection. The same configuration is used as in
the previous experiment, i.e., at least 0.1 posterior
probability difference between the two classifiers,
and adding 5% of new samples in each iteration.
All of these sample selection approaches use the
confidence-based labeling. For comparison, Fig-
ure 4 also shows the learning curve for supervised
learning when varying the training size. We can
see from the figure that compared to random selec-
tion, the most confident selection method shows
similar performance in the first few iterations, but
its performance continues to increase and the sat-
uration point is much later than random selection.
Unlike the other two sample selection methods,
most different selection results in noticeable per-
formance degradation after some iteration. This
difference is caused by the high self-labeling er-
ror rate of selected samples. Both random and
most confident selections perform better than su-
pervised learning at the first few iterations. This is
because the new samples added have different pos-
terior probabilities by the two classifiers, and thus
one of the classifiers benefits from these samples.

Learning curves for the other two tasks (break
index and IPB detection) show similar pattern for
the random and most different selection methods,
but some differences in the most confident selec-
tion results. For the IPB task, the learning curve of
the most confident selection fluctuates somewhat
in the middle of the iterations with similar per-
formance to random selection, however, afterward
the performance is better than random selection.
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Figure 5: The learning curves for accent detection
using different amounts of initial labeled training
data.

For the break index detection, the learning curve
of most different selection increases more slowly
than random selection at the beginning, but the sat-
uration point is much later and therefore outper-
forms the random selection at the later iterations.

We also evaluated the effect of the amount of
initial labeled training data. In this experiment,
most confident selection is used, and the other con-
figurations are the same as the previous experi-
ment. The learning curve for accent detection is
shown in Figure 5 using different numbers of utter-
ances in the initial training data. The arrow marks
indicate the start position of each learning curve.
As we can see, the learning curve when using 20
utterances is slightly better than the others, but
there is no significant performance gain according
to the size of initial labeled training data.

Finally we compared our co-training perfor-
mance with supervised learning. For supervised
learning, all labeled utterances except for the test
set are used for training. We used most confi-
dent selection with proposed self-labeling method.
The initial training data in co-training is 3% of
that used for supervised learning. After 74 iter-
ations, the size of samples of co-training is similar
to that in the supervised method. Table 3 presents
the results of three prosodic event detection tasks.
We can see that the performance of co-training for
these three tasks is slightly worse than supervised
learning using all the labeled data, but is signifi-
cantly better than the original performance using
3% of hand labeled data.

Most of the previous work for prosodic event
detection reported their results using classification
accuracy instead of F-measure. Therefore to bet-
ter compare with previous work, we present be-
low the accuracy results in our approach. The co-
training algorithm achieves the accuracy of 85.3%,

Accent IPB Break

Supervised 0.82 0.74 0.77

Co-
training

Initial training (3%) 0.69 0.59 0.62

After 74 iterations 0.80 0.71 0.75

Table 3: The results (F-measure) of prosodic
event detection for supervised and co-training ap-
proaches.

90.1%, and 86.7% respectively for accent, intona-
tional phrase boundary, and break index detection,
compared with 87.6%, 92.3%, and 88.9% in su-
pervised learning. Although the test condition is
different, our result is significantly better than that
of other semi-supervised approaches of previous
work and comparable with supervised approaches.

7 Conclusions

In this paper, we exploit the co-training method
for automatic prosodic event detection. We intro-
duced a confidence-based method to assign possi-
ble labels to unlabeled data and evaluated the per-
formance combined with informative sample se-
lection methods. Our experimental results using
co-training are significantly better than the origi-
nal supervised results using the small amount of
training data, and closer to that using supervised
learning with a large amount of data. This sug-
gests that the use of unlabeled data can lead to sig-
nificant improvement for prosodic event detection.

In our experiment, we used some labeled data
as development set to estimate some parameters.
For the future work, we will perform analysis
of loss function of each classifier in order to es-
timate parameters without labeled development
data. In addition, we plan to compare this to other
semi-supervised learning techniques such as ac-
tive learning. We also plan to use this algorithm
to annotate different types of data, such as sponta-
neous speech, and incorporate prosodic events in
spoken language applications.
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