
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 1030–1039,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Finding Cognate Groups using Phylogenies

David Hall and Dan Klein
Computer Science Division

University of California, Berkeley
{dlwh,klein}@cs.berkeley.edu

Abstract

A central problem in historical linguistics
is the identification of historically related
cognate words. We present a generative
phylogenetic model for automatically in-
ducing cognate group structure from un-
aligned word lists. Our model represents
the process of transformation and trans-
mission from ancestor word to daughter
word, as well as the alignment between
the words lists of the observed languages.
We also present a novel method for sim-
plifying complex weighted automata cre-
ated during inference to counteract the
otherwise exponential growth of message
sizes. On the task of identifying cognates
in a dataset of Romance words, our model
significantly outperforms a baseline ap-
proach, increasing accuracy by as much as
80%. Finally, we demonstrate that our au-
tomatically induced groups can be used to
successfully reconstruct ancestral words.

1 Introduction

A crowning achievement of historical linguistics
is the comparative method (Ohala, 1993), wherein
linguists use word similarity to elucidate the hid-
den phonological and morphological processes
which govern historical descent. The comparative
method requires reasoning about three important
hidden variables: the overall phylogenetic guide
tree among languages, the evolutionary parame-
ters of the ambient changes at each branch, and
the cognate group structure that specifies which
words share common ancestors.

All three of these variables interact and inform
each other, and so historical linguists often con-
sider them jointly. However, linguists are cur-
rently required to make qualitative judgments re-
garding the relative likelihood of certain sound

changes, cognate groups, and so on. Several re-
cent statistical methods have been introduced to
provide increased quantitative backing to the com-
parative method (Oakes, 2000; Bouchard-Côté et
al., 2007; Bouchard-Côté et al., 2009); others have
modeled the spread of language changes and spe-
ciation (Ringe et al., 2002; Daumé III and Camp-
bell, 2007; Daumé III, 2009; Nerbonne, 2010).
These automated methods, while providing ro-
bustness and scale in the induction of ancestral
word forms and evolutionary parameters, assume
that cognate groups are already known. In this
work, we address this limitation, presenting a
model in which cognate groups can be discovered
automatically.

Finding cognate groups is not an easy task,
because underlying morphological and phonolog-
ical changes can obscure relationships between
words, especially for distant cognates, where sim-
ple string overlap is an inadequate measure of sim-
ilarity. Indeed, a standard string similarity met-
ric like Levenshtein distance can lead to false
positives. Consider the often cited example of
Greek /ma:ti/ and Malay /mata/, both meaning
“eye” (Bloomfield, 1938). If we were to rely on
Levenshtein distance, these words would seem to
be a highly attractive match as cognates: they are
nearly identical, essentially differing in only a sin-
gle character. However, no linguist would posit
that these two words are related. To correctly learn
that they are not related, linguists typically rely
on two kinds of evidence. First, because sound
change is largely regular, we would need to com-
monly see /i/ in Greek wherever we see /a/ in
Malay (Ross, 1950). Second, we should look at
languages closely related to Greek and Malay, to
see if similar patterns hold there, too.

Some authors have attempted to automatically
detect cognate words (Mann and Yarowsky, 2001;
Lowe and Mazaudon, 1994; Oakes, 2000; Kon-
drak, 2001; Mulloni, 2007), but these methods

1030

typically work on language pairs rather than on
larger language families. To fully automate the
comparative method, it is necessary to consider
multiple languages, and to do so in a model which
couples cognate detection with similarity learning.

In this paper, we present a new generative model
for the automatic induction of cognate groups
given only (1) a known family tree of languages
and (2) word lists from those languages. A prior
on word survival generates a number of cognate
groups and decides which groups are attested in
each modern language. An evolutionary model
captures how each word is generated from its par-
ent word. Finally, an alignment model maps the
flat word lists to cognate groups. Inference re-
quires a combination of message-passing in the
evolutionary model and iterative bipartite graph
matching in the alignment model.

In the message-passing phase, our model en-
codes distributions over strings as weighted finite
state automata (Mohri, 2009). Weighted automata
have been successfully applied to speech process-
ing (Mohri et al., 1996) and more recently to mor-
phology (Dreyer and Eisner, 2009). Here, we
present a new method for automatically compress-
ing our message automata in a way that can take
into account prior information about the expected
outcome of inference.

In this paper, we focus on a transcribed word
list of 583 cognate sets from three Romance lan-
guages (Portuguese, Italian and Spanish), as well
as their common ancestor Latin (Bouchard-Côté
et al., 2007). We consider both the case where
we know that all cognate groups have a surface
form in all languages, and where we do not know
that. On the former, easier task we achieve iden-
tification accuracies of 90.6%. On the latter task,
we achieve F1 scores of 73.6%. Both substantially
beat baseline performance.

2 Model

In this section, we describe a new generative
model for vocabulary lists in multiple related lan-
guages given the phylogenetic relationship be-
tween the languages (their family tree). The gener-
ative process factors into three subprocesses: sur-
vival, evolution, and alignment, as shown in Fig-
ure 1(a). Survival dictates, for each cognate group,
which languages have words in that group. Evo-
lution describes the process by which daughter
words are transformed from their parent word. Fi-

nally, alignment describes the “scrambling” of the
word lists into a flat order that hides their lineage.
We present each subprocess in detail in the follow-
ing subsections.

2.1 Survival

First, we choose a number G of ancestral cognate
groups from a geometric distribution. For each
cognate group g, our generative process walks
down the tree. At each branch, the word may ei-
ther survive or die. This process is modeled in a
“death tree” with a Bernoulli random variable S`g
for each language ` and cognate group g specify-
ing whether or not the word died before reaching
that language. Death at any node in the tree causes
all of that node’s descendants to also be dead. This
process captures the intuition that cognate words
are more likely to be found clustered in sibling lan-
guages than scattered across unrelated languages.

2.2 Evolution

Once we know which languages will have an at-
tested word and which will not, we generate the
actual word forms. The evolution component of
the model generates words according to a branch-
specific transformation from a node’s immediate
ancestor. Figure 1(a) graphically describes our
generative model for three Romance languages:
Italian, Portuguese, and Spanish.1 In each cog-
nate group, each word W` is generated from its
parent according to a conditional distribution with
parameter ϕ`, which is specific to that edge in the
tree, but shared between all cognate groups.

In this paper, each ϕ` takes the form of a pa-
rameterized edit distance similar to the standard
Levenshtein distance. Richer models – such as the
ones in Bouchard-Côté et al. (2007) – could in-
stead be used, although with an increased infer-
ential cost. The edit transducers are represented
schematically in Figure 1(b). Characters x and
y are arbitrary phonemes, and σ(x, y) represents
the cost of substituting x with y. ε represents the
empty phoneme and is used as shorthand for inser-
tion and deletion, which have parameters η and δ,
respectively.

As an example, see the illustration in Fig-
ure 1(c). Here, the Italian word /fwOko/ (“fire”) is
generated from its parent form /fokus/ (“hearth”)

1Though we have data for Latin, we treat it as unobserved
to represent the more common case where the ancestral lan-
guage is unattested; we also evaluate our system using the
Latin data.

1031

G

WVL

WPI

φ

φ

φ φ

φ

WLA

φ

SLA

SVL

SPI

SIT SESSPT

L L

wpt wes

L

π

wITwITwITwITwITwITWITWIT

Su
rv

iv
al

Evolution

f u sk

f w ɔ ok

A
lig

nm
en

t(a)

(b)

(c)

x:y / σ(x,y)

x:ε/δ
x

 ε:y/ηy

o

Figure 1: (a) The process by which cognate words are generated. Here, we show the derivation of Romance language words
W` from their respective Latin ancestor, parameterized by transformations ϕ` and survival variables S`. Languages shown
are Latin (LA), Vulgar Latin (VL), Proto-Iberian (PI), Italian (IT), Portuguese (PT), and Spanish (ES). Note that only modern
language words are observed (shaded). (b) The class of parameterized edit distances used in this paper. Each pair of phonemes
has a weight σ for deletion, and each phoneme has weights η and δ for insertion and deletion respectively. (c) A possible
alignment produced by an edit distance between the Latin word focus (“hearth”) and the Italian word fuoco (“fire”).

by a series of edits: two matches, two substitu-
tions (/u/→ /o/, and /o/→/O/), one insertion (w)
and one deletion (/s/). The probability of each
individual edit is determined by ϕ. Note that the
marginal probability of a specific Italian word con-
ditioned on its Vulgar Latin parent is the sum over
all possible derivations that generate it.

2.3 Alignment

Finally, at the leaves of the trees are the observed
words. (We take non-leaf nodes to be unobserved.)
Here, we make the simplifying assumption that in
any language there is at most one word per lan-
guage per cognate group. Because the assign-
ments of words to cognates is unknown, we spec-
ify an unknown alignment parameter π` for each
modern language which is an alignment of cognate
groups to entries in the word list. In the case that
every cognate group has a word in each language,
each π` is a permutation. In the more general case
that some cognate groups do not have words from
all languages, this mapping is injective from words
to cognate groups. From a generative perspective,
π` generates observed positions of the words in

some vocabulary list.
In this paper, our task is primarily to learn the

alignment variables π`. All other hidden variables
are auxiliary and are to be marginalized to the
greatest extent possible.

3 Inference of Cognate Assignments

In this section, we discuss the inference method
for determining cognate assignments under fixed
parameters ϕ. We are given a set of languages and
a list of words in each language, and our objec-
tive is to determine which words are cognate with
each other. Because the parameters π` are either
permutations or injections, the inference task is re-
duced to finding an alignment π of the respective
word lists to maximize the log probability of the
observed words.

π∗ = arg max
π

∑
g

log p(w(`,π`(g))|ϕ, π,w−`)

w(`,π`(g)) is the word in language ` that π` has
assigned to cognate group g. Maximizing this
quantity directly is intractable, and so instead we
use a coordinate ascent algorithm to iteratively

1032

maximize the alignment corresponding to a
single language ` while holding the others fixed:

π∗` = arg max
π`

∑
g

log p(w(`,π`(g))|ϕ, π−`, π`,w−`)

Each iteration is then actually an instance of
bipartite graph matching, with the words in one
language one set of nodes, and the current cognate
groups in the other languages the other set of
nodes. The edge affinities aff between these
nodes are the conditional probabilities of each
word w` belonging to each cognate group g:

aff(w`, g) = p(w`|w−`,π−`(g), ϕ, π−`)

To compute these affinities, we perform in-
ference in each tree to calculate the marginal
distribution of the words from the language `.
For the marginals, we use an analog of the for-
ward/backward algorithm. In the upward pass, we
send messages from the leaves of the tree toward
the root. For observed leaf nodes Wd, we have:

µd→a(wa) = p(Wd = wd|wa, ϕd)

and for interior nodes Wi:

µi→a(wa) =
∑
wi

p(wi|wa, ϕi)
∏

d∈child(wi)

µd→i(wi)

(1)
In the downward pass (toward the lan-
guage `), we sum over ancestral words Wa:

µa→d(wd)

=
∑
wa

p(wd|wa, ϕd)µa′→a(wa)
∏

d′∈child(wa)

d′ 6=d

µd′→a(wa)

where a′ is the ancestor of a. Computing these
messages gives a posterior marginal distribution
µ`(w`) = p(w`|w−`,π−`(g), ϕ, π−`), which is pre-
cisely the affinity score we need for the bipartite
matching. We then use the Hungarian algorithm
(Kuhn, 1955) to find the optimal assignment for
the bipartite matching problem.

One important final note is initialization. In our
early experiments we found that choosing a ran-
dom starting configuration unsurprisingly led to
rather poor local optima. Instead, we started with
empty trees, and added in one language per itera-
tion until all languages were added, and then con-
tinued iterations on the full tree.

4 Learning

So far we have only addressed searching for
Viterbi alignments π under fixed parameters. In

practice, it is important to estimate better para-
metric edit distances ϕ` and survival variables
S`. To motivate the need for good transducers,
consider the example of English “day” /deI/ and
Latin “diēs” /dIe:s/, both with the same mean-
ing. Surprisingly, these words are in no way re-
lated, with English “day” probably coming from a
verb meaning “to burn” (OED, 1989). However,
a naively constructed edit distance, which for ex-
ample might penalize vowel substitutions lightly,
would fail to learn that Latin words that are bor-
rowed into English would not undergo the sound
change /I/→/eI/. Therefore, our model must learn
not only which sound changes are plausible (e.g.
vowels turning into other vowels is more common
than vowels turning into consonants), but which
changes are appropriate for a given language.2

At a high level, our learning algorithm is much
like Expectation Maximization with hard assign-
ments: after we update the alignment variables π
and thus form new potential cognate sets, we re-
estimate our model’s parameters to maximize the
likelihood of those assignments.3 The parameters
can be learned through standard maximum likeli-
hood estimation, which we detail in this section.

Because we enforce that a word in language d
must be dead if its parent word in language a is
dead, we just need to learn the conditional prob-
abilities p(Sd = dead|Sa = alive). Given fixed
assignments π, the maximum likelihood estimate
can be found by counting the number of “deaths”
that occurred between a child and a live parent,
applying smoothing – we found adding 0.5 to be
reasonable – and dividing by the total number of
live parents.

For the transducers ϕ, we learn parameterized
edit distances that model the probabilities of dif-
ferent sound changes. For each ϕ` we fit a non-
uniform substitution, insertion, and deletion ma-
trix σ(x, y). These edit distances define a condi-

2We note two further difficulties: our model does not han-
dle “borrowings,” which would be necessary to capture a
significant portion of English vocabulary; nor can it seam-
lessly handle words that are inherited later in the evolution of
language than others. For instance, French borrowed words
from its parent language Latin during the Renaissance and
the Enlightenment that have not undergone the same changes
as words that evolved “naturally” from Latin. See Bloom-
field (1938). Handling these cases is a direction for future
research.

3Strictly, we can cast this problem in a variational frame-
work similar to mean field where we iteratively maximize pa-
rameters to minimize a KL-divergence. We omit details for
clarity.

1033

tional exponential family distribution when condi-
tioned on an ancestral word. That is, for any fixed
wa:∑

wd

p(wd|wa, σ) =
∑
wd

∑
z∈

align(wa,wd)

score(z;σ)

=
∑
wd

∑
z∈

align(wa,wd)

∏
(x,y)∈z

σ(x, y) = 1

where align(wa, wd) is the set of possible align-
ments between the phonemes in words wa and wd.

We are seeking the maximum likelihood esti-
mate of each ϕ, given fixed alignments π:

ϕ̂` = arg max
ϕ`

p(w|ϕ, π)

To find this maximizer for any given π`, we
need to find a marginal distribution over the
edges connecting any two languages a and
d. With this distribution, we calculate the
expected “alignment unigrams.” That is, for
each pair of phonemes x and y (or empty
phoneme ε), we need to find the quantity:

Ep(wa,wd)[#(x, y; z)] =∑
wa,wd

∑
z∈

align(wa,wd)

#(x,y; z)p(z|wa, wd)p(wa, wd)

where we denote #(x, y; z) to be the num-
ber of times the pair of phonemes (x, y) are
aligned in alignment z. The exact method for
computing these counts is to use an expectation
semiring (Eisner, 2001).

Given the expected counts, we now need to nor-
malize them to ensure that the transducer repre-
sents a conditional probability distribution (Eis-
ner, 2002; Oncina and Sebban, 2006). We have
that, for each phoneme x in the ancestor language:

ηy =
E[#(ε, y; z)]
E[#(·, ·; z)]

σ(x, y) = (1−
∑
y′

ηy′)
E[#(x, y; z)]
E[#(x, ·; z)]

δx = (1−
∑
y′

ηy′)
E[#(x, ε; z)]
E[#(x, ·; z)]

Here, we have #(·, ·; z) =
∑

x,y #(x, y; z) and
#(x, ·; z) =

∑
y #(x, y; z). The (1 −

∑
y′ ηy′)

term ensure that for any ancestral phoneme x,∑
y ηy+

∑
y σ(x, y)+δx = 1. These equations en-

sure that the three transition types (insertion, sub-
stitution/match, deletion) are normalized for each
ancestral phoneme.

5 Transducers and Automata

In our model, it is not just the edit distances
that are finite state machines. Indeed, the words
themselves are string-valued random variables that
have, in principle, an infinite domain. To represent
distributions and messages over these variables,
we chose weighted finite state automata, which
can compactly represent functions over strings.
Unfortunately, while initially compact, these au-
tomata become unwieldy during inference, and so
approximations must be used (Dreyer and Eisner,
2009). In this section, we summarize the standard
algorithms and representations used for weighted
finite state transducers. For more detailed treat-
ment of the general transducer operations, we di-
rect readers to Mohri (2009).

A weighted automaton (resp. transducer) en-
codes a function over strings (resp. pairs of
strings) as weighted paths through a directed
graph. Each edge in the graph has a real-valued
weight4 and a label, which is a single phoneme
in some alphabet Σ or the empty phoneme ε (resp.
pair of labels in some alphabet Σ×∆). The weight
of a string is then the sum of all paths through the
graph that accept that string.

For our purposes, we are concerned with three
fundamental operations on weighted transducers.
The first is computing the sum of all paths through
a transducer, which corresponds to computing the
partition function of a distribution over strings.
This operation can be performed in worst-case
cubic time (using a generalization of the Floyd-
Warshall algorithm). For acyclic or feed-forward
transducers, this time can be improved dramati-
cally by using a generalization of Djisktra’s algo-
rithm or other related algorithms (Mohri, 2009).

The second operation is the composition of two
transducers. Intuitively, composition creates a new
transducer that takes the output from the first trans-
ducer, processes it through the second transducer,
and then returns the output of the second trans-
ducer. That is, consider two transducers T1 and
T2. T1 has input alphabet Σ and output alpha-
bet ∆, while T2 has input alphabet ∆ and out-
put alphabet Ω. The composition T1 ◦ T2 returns
a new transducer over Σ and Ω such that (T1 ◦
T2)(x, y) =

∑
u T1(x, u) · T2(u, y). In this paper,

we use composition for marginalization and fac-
tor products. Given a factor f1(x, u;T1) and an-

4The weights can be anything that form a semiring, but for
the sake of exposition we specialize to real-valued weights.

1034

other factor f2(u, y;T2), composition corresponds
to the operation ψ(x, y) =

∑
u f1(x, u)f2(u, y).

For two messages µ1(w) and µ2(w), the same al-
gorithm can be used to find the product µ(w) =
µ1(w)µ2(w).

The third operation is transducer minimization.
Transducer composition produces O(nm) states,
where n and m are the number of states in each
transducer. Repeated compositions compound the
problem: iterated composition of k transducers
produces O(nk) states. Minimization alleviates
this problem by collapsing indistinguishable states
into a single state. Unfortunately, minimization
does not always collapse enough states. In the next
section we discuss approaches to “lossy” mini-
mization that produce automata that are not ex-
actly the same but are much smaller.

6 Message Approximation

Recall that in inference, when summing out in-
terior nodes wi we calculated the product over
incoming messages µd→i(wi) (Equation 1), and
that these products are calculated using transducer
composition. Unfortunately, the maximal number
of states in a message is exponential in the num-
ber of words in the cognate group. Minimization
can only help so much: in order for two states to
be collapsed, the distribution over transitions from
those states must be indistinguishable. In practice,
for the automata generated in our model, mini-
mization removes at most half the states, which is
not sufficient to counteract the exponential growth.
Thus, we need to find a way to approximate a mes-
sage µ(w) using a simpler automata µ̃(w; θ) taken
from a restricted class parameterized by θ.

In the context of transducers, previous authors
have focused on a combination of n-best lists
and unigram back-off models (Dreyer and Eis-
ner, 2009), a schematic diagram of which is in
Figure 2(d). For their problem, n-best lists are
sensible: their nodes’ local potentials already fo-
cus messages on a small number of hypotheses.
In our setting, however, n-best lists are problem-
atic; early experiments showed that a 10,000-best
list for a typical message only accounts for 50%
of message log perplexity. That is, the posterior
marginals in our model are (at least initially) fairly
flat.

An alternative approach might be to simply
treat messages as unnormalized probability distri-
butions, and to minimize the KL divergence be-

e

 g
 u f

 e
 o

f

u

u

 ue u

g
u

o

u
 f

f f

f

e

e

e e

e
g

gg

 g

g

o

o
o

o

o f

2 3

e
u
g
o
f

0 1

f

e

o

4

g
o
e
u
f

u
e
o
f
g

5

o
g
u
f

f

u e g o

f

eu g o

f

e u g

f
e e

f
u

eg
 g

(a)

(b)

(c)

(d)

u

g

o e u f o

Figure 2: Various topologies for approximating topologies:
(a) a unigram model, (b) a bigram model, (c) the anchored
unigram model, and (d) the n-best plus backoff model used in
Dreyer and Eisner (2009). In (c) and (d), the relative height
of arcs is meant to convey approximate probabilities.

tween some approximating message µ̃(w) and the
true message µ(w). However, messages are not
always probability distributions and – because the
number of possible strings is in principle infinite –
they need not sum to a finite number.5 Instead, we
propose to minimize the KL divergence between
the “expected” marginal distribution and the ap-
proximated “expected” marginal distribution:

θ̂ = arg min
θ

DKL(τ(w)µ(w)||τ(w)µ̃(w; θ))

= arg min
θ

∑
w

τ(w)µ(w) log
τ(w)µ(w)
τ(w)µ̃(w; θ)

= arg min
θ

∑
w

τ(w)µ(w) log
µ(w)
µ̃(w; θ)

(2)

where τ is a term acting as a surrogate for the pos-
terior distribution over w without the information
from µ. That is, we seek to approximate µ not on
its own, but as it functions in an environment rep-
resenting its final context. For example, if µ(w) is
a backward message, τ could be a stand-in for a
forward probability.6

In this paper, µ(w) is a complex automaton with
potentially many states, µ̃(w; θ) is a simple para-
metric automaton with forms that we discuss be-
low, and τ(w) is an arbitrary (but hopefully fairly
simple) automaton. The actual method we use is

5As an extreme example, suppose we have observed that
Wd = wd and that p(Wd = wd|wa) = 1 for all ancestral
words wa. Then, clearly

P
wd
µ(wd) =

P
wd

P
p(Wd =

wd|wa) = ∞ whenever there are an infinite number of pos-
sible ancestral strings wa.

6This approach is reminiscent of Expectation Propaga-
tion (Minka, 2001).

1035

as follows. Given a deterministic prior automa-
ton τ , and a deterministic automaton topology µ̃∗,
we create the composed unweighted automaton
τ ◦µ̃∗, and calculate arc transitions weights to min-
imize the KL divergence between that composed
transducer and τ ◦ µ. The procedure for calcu-
lating these statistics is described in Li and Eis-
ner (2009), which amounts to using an expectation
semiring (Eisner, 2001) to compute expected tran-
sitions in τ ◦ µ̃∗ under the probability distribution
τ ◦ µ.

From there, we need to create the automaton
τ−1 ◦ τ ◦ µ̃. That is, we need to divide out the
influence of τ(w). Since we know the topology
and arc weights for τ ahead of time, this is often
as simple as dividing arc weights in τ ◦ µ̃ by the
corresponding arc weight in τ(w). For example,
if τ encodes a geometric distribution over word
lengths and a uniform distribution over phonemes
(that is, τ(w) ∝ p|w|), then computing µ̃ is as sim-
ple as dividing each arc in τ ◦ µ̃ by p.7

There are a number of choices for τ . One is a
hard maximum on the length of words. Another is
to choose τ(w) to be a unigram language model
over the language in question with a geometric
probability over lengths. In our experiments, we
find that τ(w) can be a geometric distribution over
lengths with a uniform distribution over phonemes
and still give reasonable results. This distribution
captures the importance of shorter strings while
still maintaining a relatively weak prior.

What remains is the selection of the topologies
for the approximating message µ̃. We consider
three possible approximations, illustrated in Fig-
ure 2. The first is a plain unigram model, the
second is a bigram model, and the third is an an-
chored unigram topology: a position-specific un-
igram model for each position up to some maxi-
mum length.

The first we consider is a standard unigram
model, which is illustrated in Figure 2(a). It
has |Σ| + 2 parameters: one weight σa for each
phoneme a ∈ Σ, a starting weight λ, and a stop-
ping probability ρ. µ̃ then has the form:

µ̃(w) = λρ
∏
i≤|w|

σwi

Estimating this model involves only computing
the expected count of each phoneme, along with

7Also, we must be sure to divide each final weight in the
transducer by (1 − |Σ|p), which is the stopping probability
for a geometric transducer.

the expected length of a word, E[|w|]. We then
normalize the counts according to the maximum
likelihood estimate, with arc weights set as:

σa ∝ E[#(a)]

Recall that these expectations can be computed us-
ing an expectation semiring.

Finally, λ can be computed by ensuring that the
approximate and exact expected marginals have
the same partition function. That is, with the other
parameters fixed, solve:∑

w

τ(w)µ̃(w) =
∑
w

τ(w)µ(w)

which amounts to rescaling µ̃ by some constant.
The second topology we consider is the bigram

topology, illustrated in Figure 2(b). It is similar
to the unigram topology except that, instead of
a single state, we have a state for each phoneme
in Σ, along with a special start state. Each state
a has transitions with weights σb|a = p(b|a) ∝
E[#(b|a)]. Normalization is similar to the un-
igram case, except that we normalize the transi-
tions from each state.

The final topology we consider is the positional
unigram model in Figure 2(c). This topology takes
positional information into account. Namely, for
each position (up to some maximum position), we
have a unigram model over phonemes emitted at
that position, along with the probability of stop-
ping at that position (i.e. a “sausage lattice”). Es-
timating the parameters of this model is similar,
except that the expected counts for the phonemes
in the alphabet are conditioned on their position in
the string. With the expected counts for each posi-
tion, we normalize each state’s final and outgoing
weights. In our experiments, we set the maximum
length to seven more than the length of the longest
observed string.

7 Experiments

We conduct three experiments. The first is a “com-
plete data” experiment, in which we reconstitute
the cognate groups from the Romance data set,
where all cognate groups have words in all three
languages. This task highlights the evolution and
alignment models. The second is a much harder
“partial data” experiment, in which we randomly
prune 20% of the branches from the dataset ac-
cording to the survival process described in Sec-
tion 2.1. Here, only a fraction of words appear

1036

in any cognate group, so this task crucially in-
volves the survival model. The ultimate purpose
of the induced cognate groups is to feed richer
evolutionary models, such as full reconstruction
models. Therefore, we also consider a proto-word
reconstruction experiment. For this experiment,
using the system of Bouchard-Côté et al. (2009),
we compare the reconstructions produced from
our automatic groups to those produced from gold
cognate groups.

7.1 Baseline

As a novel but heuristic baseline for cognate group
detection, we use an iterative bipartite matching
algorithm where instead of conditional likelihoods
for affinities we use Dice’s coefficient, defined for
sets X and Y as:

Dice(X,Y) =
2|X ∩ Y |
|X|+ |Y | (3)

Dice’s coefficients are commonly used in bilingual
detection of cognates (Kondrak, 2001; Kondrak et
al., 2003). We follow prior work and use sets of
bigrams within words. In our case, during bipar-
tite matching the set X is the set of bigrams in the
language being re-permuted, and Y is the union of
bigrams in the other languages.

7.2 Experiment 1: Complete Data

In this experiment, we know precisely how many
cognate groups there are and that every cognate
group has a word in each language. While this
scenario does not include all of the features of the
real-world task, it represents a good test case of
how well these models can perform without the
non-parametric task of deciding how many clus-
ters to use.

We scrambled the 583 cognate groups in the
Romance dataset and ran each method to conver-
gence. Besides the heuristic baseline, we tried our
model-based approach using Unigrams, Bigrams
and Anchored Unigrams, with and without learn-
ing the parametric edit distances. When we did not
use learning, we set the parameters of the edit dis-
tance to (0, -3, -4) for matches, substitutions, and
deletions/insertions, respectively. With learning
enabled, transducers were initialized with those
parameters.

For evaluation, we report two metrics. The first
is pairwise accuracy for each pair of languages,
averaged across pairs of words. The other is accu-

Pairwise Exact
Acc. Match

Heuristic
Baseline 48.1 35.4

Model
Transducers Messages
Levenshtein Unigrams 37.2 26.2
Levenshtein Bigrams 43.0 26.5
Levenshtein Anch. Unigrams 68.6 56.8

Learned Unigrams 0.1 0.0
Learned Bigrams 38.7 11.3
Learned Anch. Unigrams 90.3 86.6

Table 1: Accuracies for reconstructing cognate groups. Lev-
enshtein refers to fixed parameter edit distance transducer.
Learned refers to automatically learned edit distances. Pair-
wise Accuracy means averaged on each word pair; Exact
Match refers to percentage of completely and accurately re-
constructed groups. For a description of the baseline, see Sec-
tion 7.1.

Prec. Recall F1
Heuristic

Baseline 49.0 43.5 46.1
Model

Transducers Messages
Levenshtein Anch. Unigrams 86.5 36.1 50.9

Learned Anch. Unigrams 66.9 82.0 73.6

Table 2: Accuracies for reconstructing incomplete groups.
Scores reported are precision, recall, and F1, averaged over
all word pairs.

racy measured in terms of the number of correctly,
completely reconstructed cognate groups.

Table 1 shows the results under various config-
urations. As can be seen, the kind of approxima-
tion used matters immensely. In this application,
positional information is important, more so than
the context of the previous phoneme. Both Un-
igrams and Bigrams significantly under-perform
the baseline, while Anchored Unigrams easily out-
performs it both with and without learning.

An initially surprising result is that learning ac-
tually harms performance under the unanchored
approximations. The explanation is that these
topologies are not sensitive enough to context, and
that the learning procedure ends up flattening the
distributions. In the case of unigrams – which have
the least context – learning degrades performance
to chance. However, in the case of positional uni-
grams, learning reduces the error rate by more than
two-thirds.

7.3 Experiment 2: Incomplete Data

As a more realistic scenario, we consider the case
where we do not know that all cognate groups have
words in all languages. To test our model, we ran-

1037

domly pruned 20% of the branches according the
survival process of our model.8

Because only Anchored Unigrams performed
well in Experiment 1, we consider only it and the
Dice’s coefficient baseline. The baseline needs to
be augmented to support the fact that some words
may not appear in all cognate groups. To do this,
we thresholded the bipartite matching process so
that if the coefficient fell below some value, we
started a new group for that word. We experi-
mented on 10 values in the range (0,1) for the
baseline’s threshold and report on the one (0.2)
that gives the best pairwise F1.

The results are in Table 2. Here again, we see
that the positional unigrams perform much better
than the baseline system. The learned transduc-
ers seem to sacrifice precision for the sake of in-
creased recall. This makes sense because the de-
fault edit distance parameter settings strongly fa-
vor exact matches, while the learned transducers
learn more realistic substitution and deletion ma-
trices, at the expense of making more mistakes.

For example, the learned transducers enable
our model to correctly infer that Portuguese
/d1femdu/, Spanish /defiendo/, and Italian
/difEndo/ are all derived from Latin /de:fendo:/
“defend.” Using the simple Levenshtein transduc-
ers, on the other hand, our model keeps all three
separated, because the transducers cannot know –
among other things – that Portuguese /1/, Span-
ish /e/, and Italian /i/ are commonly substituted
for one another. Unfortunately, because the trans-
ducers used cannot learn contextual rules, cer-
tain transformations can be over-applied. For in-
stance, Spanish /nombRar/ “name” is grouped to-
gether with Portuguese /num1RaR/ “number” and
Italian /numerare/ “number,” largely because the
rule Portuguese /u/→ Spanish /o/ is applied out-
side of its normal context. This sound change oc-
curs primarily with final vowels, and does not usu-
ally occur word medially. Thus, more sophisti-
cated transducers could learn better sound laws,
which could translate into improved accuracy.

7.4 Experiment 3: Reconstructions

As a final trial, we wanted to see how each au-
tomatically found cognate group faired as com-
pared to the “true groups” for actual reconstruc-
tion of proto-words. Our model is not optimized

8This dataset will be made available at
http://nlp.cs.berkeley.edu/Main.html#Historical

for faithful reconstruction, and so we used the An-
cestry Resampling system of Bouchard-Côté et al.
(2009). To evaluate, we matched each Latin word
with the best possible cognate group for that word.
The process for the matching was as follows. If
two or three of the words in an constructed cognate
group agreed, we assigned the Latin word associ-
ated with the true group to it. With the remainder,
we executed a bipartite matching based on bigram
overlap.

For evaluation, we examined the Levenshtein
distance between the reconstructed word and the
chosen Latin word. As a kind of “skyline,”
we compare to the edit distances reported in
Bouchard-Côté et al. (2009), which was based on
complete knowledge of the cognate groups. On
this task, our reconstructed cognate groups had
an average edit distance of 3.8 from the assigned
Latin word. This compares favorably to the edit
distances reported in Bouchard-Côté et al. (2009),
who using oracle cognate assignments achieved an
average Levenshtein distance of 3.0.9

8 Conclusion

We presented a new generative model of word
lists that automatically finds cognate groups from
scrambled vocabulary lists. This model jointly
models the origin, propagation, and evolution of
cognate groups from a common root word. We
also introduced a novel technique for approximat-
ing automata. Using these approximations, our
model can reduce the error rate by 80% over a
baseline approach. Finally, we demonstrate that
these automatically generated cognate groups can
be used to automatically reconstruct proto-words
faithfully, with a small increase in error.

Acknowledgments

Thanks to Alexandre Bouchard-Côté for the many
insights. This project is funded in part by the NSF
under grant 0915265 and an NSF graduate fellow-
ship to the first author.

References

Leonard Bloomfield. 1938. Language. Holt, New
York.

9Morphological noise and transcription errors contribute
to the absolute error rate for this data set.

1038

Alexandre Bouchard-Côté, Percy Liang, Thomas Grif-
fiths, and Dan Klein. 2007. A probabilistic ap-
proach to diachronic phonology. In EMNLP.

Alexandre Bouchard-Côté, Thomas L. Griffiths, and
Dan Klein. 2009. Improved reconstruction of pro-
tolanguage word forms. In NAACL, pages 65–73.

Hal Daumé III and Lyle Campbell. 2007. A Bayesian
model for discovering typological implications. In
Conference of the Association for Computational
Linguistics (ACL).

Hal Daumé III. 2009. Non-parametric Bayesian model
areal linguistics. In NAACL.

Markus Dreyer and Jason Eisner. 2009. Graphical
models over multiple strings. In EMNLP, Singa-
pore, August.

Jason Eisner. 2001. Expectation semirings: Flexible
EM for finite-state transducers. In Gertjan van No-
ord, editor, FSMNLP.

Jason Eisner. 2002. Parameter estimation for proba-
bilistic finite-state transducers. In ACL.

Grzegorz Kondrak, Daniel Marcu, and Keven Knight.
2003. Cognates can improve statistical translation
models. In NAACL.

Grzegorz Kondrak. 2001. Identifying cognates by
phonetic and semantic similarity. In NAACL.

Harold W. Kuhn. 1955. The Hungarian method for
the assignment problem. Naval Research Logistics
Quarterly, 2:83–97.

Zhifei Li and Jason Eisner. 2009. First- and second-
order expectation semirings with applications to
minimum-risk training on translation forests. In
EMNLP.

John B. Lowe and Martine Mazaudon. 1994. The re-
construction engine: a computer implementation of
the comparative method. Computational Linguis-
tics, 20(3):381–417.

Gideon S. Mann and David Yarowsky. 2001. Mul-
tipath translation lexicon induction via bridge lan-
guages. In NAACL, pages 1–8. Association for
Computational Linguistics.

Thomas P. Minka. 2001. Expectation propagation for
approximate bayesian inference. In UAI, pages 362–
369.

Mehryar Mohri, Fernando Pereira, and Michael Riley.
1996. Weighted automata in text and speech pro-
cessing. In ECAI-96 Workshop. John Wiley and
Sons.

Mehryar Mohri, 2009. Handbook of Weighted Au-
tomata, chapter Weighted Automata Algorithms.
Springer.

Andrea Mulloni. 2007. Automatic prediction of cog-
nate orthography using support vector machines. In
ACL, pages 25–30.

John Nerbonne. 2010. Measuring the diffusion of lin-
guistic change. Philosophical Transactions of the
Royal Society B: Biological Sciences.

Michael P. Oakes. 2000. Computer estimation of
vocabulary in a protolanguage from word lists in
four daughter languages. Quantitative Linguistics,
7(3):233–243.

OED. 1989. “day, n.”. In The Oxford English Dictio-
nary online. Oxford University Press.

John Ohala, 1993. Historical linguistics: Problems
and perspectives, chapter The phonetics of sound
change, pages 237–238. Longman.

Jose Oncina and Marc Sebban. 2006. Learning
stochastic edit distance: Application in handwritten
character recognition. Pattern Recognition, 39(9).

Don Ringe, Tandy Warnow, and Ann Taylor. 2002.
Indo-european and computational cladistics. Trans-
actions of the Philological Society, 100(1):59–129.

Alan S.C. Ross. 1950. Philological probability prob-
lems. Journal of the Royal Statistical Society Series
B.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2000. Inducing multilingual text analysis
tools via robust projection across aligned corpora.
In NAACL.

1039

