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Abstract

Resolving polysemy and synonymy is re-
quired for high-quality information extraction.
We present ConceptResolver, a component for
the Never-Ending Language Learner (NELL)
(Carlson et al., 2010) that handles both phe-
nomena by identifying the latent concepts that
noun phrases refer to. ConceptResolver per-
forms both word sense induction and synonym
resolution on relations extracted from text us-
ing an ontology and a small amount of la-
beled data. Domain knowledge (the ontology)
guides concept creation by defining a set of
possible semantic types for concepts. Word
sense induction is performed by inferring a set
of semantic types for each noun phrase. Syn-
onym detection exploits redundant informa-
tion to train several domain-specific synonym
classifiers in a semi-supervised fashion. When
ConceptResolver is run on NELL’s knowledge
base, 87% of the word senses it creates cor-
respond to real-world concepts, and 85% of
noun phrases that it suggests refer to the same
concept are indeed synonyms.

1 Introduction

Many information extraction systems construct
knowledge bases by extracting structured assertions
from free text (e.g., NELL (Carlson et al., 2010),
TextRunner (Banko et al., 2007)). A major limi-
tation of many of these systems is that they fail to
distinguish between noun phrases and the underly-
ing concepts they refer to. As a result, a polysemous
phrase like “apple” will refer sometimes to the con-
cept Apple Computer (the company), and other times
to the concept apple (the fruit). Furthermore, two
synonymous noun phrases like “apple” and “Apple

“apple”

“apple computer”

apple (the fruit)

Apple Computer

Figure 1: An example mapping from noun phrases (left)
to a set of underlying concepts (right). Arrows indicate
which noun phrases can refer to which concepts.

[eli lilly, lilly]
[kaspersky labs, kaspersky lab, kaspersky]
[careerbuilder, careerbuilder.com]
[l 3 communications, level 3 communications]
[cellular, u.s. cellular]
[jc penney, jc penny]
[nielsen media research, nielsen company]
[universal studios, universal music group, universal]
[amr corporation, amr]
[intel corp, intel corp., intel corporation, intel]

[emmitt smith, chris canty]
[albert pujols, pujols]
[carlos boozer, dennis martinez]
[jason hirsh, taylor buchholz]
[chris snyder, ryan roberts]
[j.p. losman, losman, jp losman]
[san francisco giants, francisco rodriguez]
[andruw jones, andruw]
[aaron heilman, bret boone]
[roberto clemente, clemente]

Figure 2: A random sample of concepts created by Con-
ceptResolver. The first 10 concepts are from company,
while the second 10 are from athlete.

Computer” can refer to the same underlying con-
cept. The result of ignoring this many-to-many map-
ping between noun phrases and underlying concepts
(see Figure 1) is confusion about the meaning of ex-
tracted information. To minimize such confusion, a
system must separately represent noun phrases, the
underlying concepts to which they can refer, and the
many-to-many “can refer to” relation between them.

The relations extracted by systems like NELL ac-
tually apply to concepts, not to noun phrases. Say
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the system extracts the relation ceoOf(x1, x2) be-
tween the noun phrases x1 and x2. The correct in-
terpretation of this extracted relation is that there ex-
ist concepts c1 and c2 such that x1 can refer to c1,
x2 can refer to c2, and ceoOf(c1, c2). If the orig-
inal relation were ceoOf(“steve”, “apple”), then c1
would be Steve Jobs, and c2 would be Apple Com-
puter. A similar interpretation holds for one-place
category predicates like person(x1). We define con-
cept discovery as the problem of (1) identifying con-
cepts like c1 and c2 from extracted predicates like
ceoOf(x1, x2) and (2) mapping noun phrases like
x1, x2 to the concepts they can refer to.

The main input to ConceptResolver is a set of
extracted category and relation instances over noun
phrases, like person(x1) and ceoOf(x1, x2), pro-
duced by running NELL. Here, any individual noun
phrase xi can be labeled with multiple categories
and relations. The output of ConceptResolver is
a set of concepts, {c1, c2, ..., cn}, and a mapping
from each noun phrase in the input to the set of
concepts it can refer to. Like many other systems
(Miller, 1995; Yates and Etzioni, 2007; Lin and Pan-
tel, 2002), ConceptResolver represents each output
concept ci as a set of synonymous noun phrases,
i.e., ci = {xi1, xi2, ..., xim}. For example, Figure 2
shows several concepts output by ConceptResolver;
each concept clearly reveals which noun phrases can
refer to it. Each concept also has a semantic type that
corresponds to a category in ConceptResolver’s on-
tology; for instance, the first 10 concepts in Figure 2
belong to the category company.

Previous approaches to concept discovery use lit-
tle prior knowledge, clustering noun phrases based
on co-occurrence statistics (Pantel and Lin, 2002).
In comparison, ConceptResolver uses a knowledge-
rich approach. In addition to the extracted relations,
ConceptResolver takes as input two other sources of
information: an ontology, and a small number of la-
beled synonyms. The ontology contains a schema
for the relation and category predicates found in
the input instances, including properties of predi-
cates like type restrictions on its domain and range.
The category predicates are used to assign semantic
types to each concept, and the properties of relation
predicates are used to create evidence for synonym
resolution. The labeled synonyms are used as train-
ing data during synonym resolution, where they are

1. Induce Word Senses

i. Use extracted category instances to create
one or more senses per noun phrase.

ii. Use argument type constraints to produce re-
lation evidence for synonym resolution.

2. Cluster Synonymous Senses
For each category C defined in the ontology:

i. Train a semi-supervised classifier to predict
synonymy.

ii. Cluster word senses with semantic type C
using classifier’s predictions.

iii. Output sense clusters as concepts with se-
mantic type C.

Figure 3: High-level outline of ConceptResolver’s algo-
rithm.

used to train a semi-supervised classifier.
ConceptResolver discovers concepts using the

process outlined in Figure 3. It first performs word
sense induction, using the extracted category in-
stances to create one or more unambiguous word
senses for each noun phrase in the knowledge base.
Each word sense is a copy of the original noun
phrase paired with a semantic type (a category) that
restricts the concepts it can refer to. ConceptRe-
solver then performs synonym resolution on these
word senses. This step treats the senses of each se-
mantic type independently, first training a synonym
classifier then clustering the senses based on the
classifier’s decisions. The result of this process is
clusters of synonymous word senses, which are out-
put as concepts. Concepts inherit the semantic type
of the word senses they contain.

We evaluate ConceptResolver using a subset of
NELL’s knowledge base, presenting separate results
for the concepts of each semantic type. The eval-
uation shows that, on average, 87% of the word
senses created by ConceptResolver correspond to
real-world concepts. We additionally find that, on
average, 85% of the noun phrases in each concept
refer to the same real-world entity.

2 Prior Work

Previous work on concept discovery has focused
on the subproblems of word sense induction and
synonym resolution. Word sense induction is typ-
ically performed using unsupervised clustering. In
the SemEval word sense induction and disambigua-
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tion task (Agirre and Soroa, 2007; Manandhar et al.,
2010), all of the submissions in 2007 created senses
by clustering the contexts each word occurs in, and
the 2010 event explicitly disallowed the use of exter-
nal resources like ontologies. Other systems cluster
words to find both word senses and concepts (Pantel
and Lin, 2002; Lin and Pantel, 2002). ConceptRe-
solver’s category-based approach is quite different
from these clustering approaches. Snow et al. (2006)
describe a system which adds new word senses to
WordNet. However, Snow et al. assume the exis-
tence of an oracle which provides the senses of each
word. In contrast, ConceptResolver automatically
determines the number of senses for each word.

Synonym resolution on relations extracted from
web text has been previously studied by Resolver
(Yates and Etzioni, 2007), which finds synonyms in
relation triples extracted by TextRunner (Banko et
al., 2007). In contrast to our system, Resolver is un-
supervised and does not have a schema for the re-
lations. Due to different inputs, ConceptResolver
and Resolver are not precisely comparable. How-
ever, our evaluation shows that ConceptResolver has
higher synonym resolution precision than Resolver,
which we attribute to our semi-supervised approach
and the known relation schema.

Synonym resolution also arises in record link-
age (Winkler, 1999; Ravikumar and Cohen, 2004)
and citation matching (Bhattacharya and Getoor,
2007; Bhattacharya and Getoor, 2006; Poon and
Domingos, 2007). As with word sense induction,
many approaches to these problems are unsuper-
vised. A problem with these algorithms is that they
require the authors to define domain-specific simi-
larity heuristics to achieve good performance. Other
synonym resolution work is fully supervised (Singla
and Domingos, 2006; McCallum and Wellner, 2004;
Snow et al., 2007), training models using manually
constructed sets of synonyms. These approaches use
large amounts of labeled data, which can be difficult
to create. ConceptResolver’s approach lies between
these two extremes: we label a small number of syn-
onyms (10 pairs), then use semi-supervised training
to learn a similarity function. We think our tech-
nique is a good compromise, as it avoids much of
the manual effort of the other approaches: tuning the
similarity function in one case, and labeling a large
amount of data in the other

ConceptResolver uses a novel algorithm for semi-
supervised clustering which is conceptually similar
to other work in the area. Like other approaches
(Basu et al., 2004; Xing et al., 2003; Klein et al.,
2002), we learn a similarity measure for clustering
based on a set of must-link and cannot-link con-
straints. Unlike prior work, our algorithm exploits
multiple views of the data to improve the similar-
ity measure. As far as we know, ConceptResolver
is the first application of semi-supervised cluster-
ing to relational data – where the items being clus-
tered are connected by relations (Getoor and Diehl,
2005). Interestingly, the relational setting also pro-
vides us with the independent views that are benefi-
cial to semi-supervised training.

Concept discovery is also related to coreference
resolution (Ng, 2008; Poon and Domingos, 2008).
The difference between the two problems is that
coreference resolution finds noun phrases that refer
to the same concept within a specific document. We
think the concepts produced by a system like Con-
ceptResolver could be used to improve coreference
resolution by providing prior knowledge about noun
phrases that can refer to the same concept. This
knowledge could be especially helpful for cross-
document coreference resolution systems (Haghighi
and Klein, 2010), which actually represent concepts
and track mentions of them across documents.

3 Background: Never-Ending Language
Learner

ConceptResolver is designed as a component for the
Never-Ending Language Learner (NELL) (Carlson
et al., 2010). In this section, we provide some per-
tinent background information about NELL that in-
fluenced the design of ConceptResolver 1.

NELL is an information extraction system that
has been running 24x7 for over a year, using coupled
semi-supervised learning to populate an ontology
from unstructured text found on the web. The ontol-
ogy defines two types of predicates: categories (e.g.,
company and CEO) and relations (e.g., ceoOf-
Company). Categories are single-argument pred-
icates, and relations are two-argument predicates.

1More information about NELL, including browsable and
downloadable versions of its knowledge base, is available from
http://rtw.ml.cmu.edu.
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NELL’s knowledge base contains both definitions
for predicates and extracted instances of each pred-
icate. At present, NELL’s knowledge base defines
approximately 500 predicates and contains over half
a million extracted instances of these predicates with
an accuracy of approximately 0.85.

Relations between predicates are an important
component of NELL’s ontology. For ConceptRe-
solver, the most important relations are domain and
range, which define argument types for each rela-
tion predicate. For example, the first argument of
ceoOfCompany must be a CEO and the second ar-
gument must be a company. Argument type restric-
tions inform ConceptResolver’s word sense induc-
tion process (Section 4.1).

Multiple sources of information are used to popu-
late each predicate with high precision. The system
runs four independent extractors for each predicate:
the first uses web co-occurrence statistics, the sec-
ond uses HTML structures on webpages, the third
uses the morphological structure of the noun phrase
itself, and the fourth exploits empirical regularities
within the knowledge base. These subcomponents
are described in more detail by Carlson et al. (2010)
and Wang and Cohen (2007). NELL learns using
a bootstrapping process, iteratively re-training these
extractors using instances in the knowledge base,
then adding some predictions of the learners to the
knowledge base. This iterative learning process can
be viewed as a discrete approximation to EM which
does not explicitly instantiate every latent variable.

As in other information extraction systems, the
category and relation instances extracted by NELL
contain polysemous and synonymous noun phrases.
ConceptResolver was developed to reduce the im-
pact of these phenomena.

4 ConceptResolver

This section describes ConceptResolver, our new
component which creates concepts from NELL’s ex-
tractions. It uses a two-step procedure, first creating
one or more senses for each noun phrase, then clus-
tering synonymous senses to create concepts.

4.1 Word Sense Induction

ConceptResolver induces word senses using a sim-
ple assumption about noun phrases and concepts. If

a noun phrase has multiple senses, the senses should
be distinguishable from context. People can deter-
mine the sense of an ambiguous word given just a
few surrounding words (Kaplan, 1955). We hypoth-
esize that local context enables sense disambigua-
tion by defining the semantic type of the ambiguous
word. ConceptResolver makes the simplifying as-
sumption that all word senses can be distinguished
on the basis of semantic type. As the category pred-
icates in NELL’s ontology define a set of possible
semantic types, this assumption is equivalent to the
one-sense-per-category assumption: a noun phrase
refers to at most one concept in each category of
NELL’s ontology. For example, this means that a
noun phrase can refer to a company and a fruit, but
not multiple companies.

ConceptResolver uses the extracted category as-
sertions to define word senses. Each word sense is
represented as a tuple containing a noun phrase and
a category. In synonym resolution, the category acts
like a type constraint, and only senses with the same
category type can be synonymous. To create senses,
the system interprets each extracted category predi-
cate c(x) as evidence that category c contains a con-
cept denoted by noun phrase x. Because it assumes
that there is at most one such concept, Concept-
Resolver creates one sense of x for each extracted
category predicate. As a concrete example, say
the input assertions contain company(“apple”) and
fruit(“apple”). Sense induction creates two senses
for “apple”: (“apple”, company) and (“apple”, fruit).

The second step of sense induction produces ev-
idence for synonym resolution by creating relations
between word senses. These relations are created
from input relations and the ontology’s argument
type constraints. Each extracted relation is mapped
to all possible sense relations that satisfy the ar-
gument type constraints. For example, the noun
phrase relation ceoOfCompany(“steve jobs”, “ap-
ple”) would map to ceoOfCompany((“steve jobs”,
ceo), (“apple”, company)). It would not map to a
similar relation with (“apple”, fruit), however, as
(“apple”, fruit) is not in the range of ceoOfCom-
pany. This process is effective because the relations
in the ontology have restrictive domains and ranges,
so only a small fraction of sense pairs satisfy the ar-
gument type restrictions. It is also not vital that this
mapping be perfect, as the sense relations are only
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used as evidence for synonym resolution. The final
output of sense induction is a sense-disambiguated
knowledge base, where each noun phrase has been
converted into one or more word senses, and rela-
tions hold between pairs of senses.

4.2 Synonym Resolution

After mapping each noun phrase to one or more
senses (each with a distinct category type), Con-
ceptResolver performs semi-supervised clustering
to find synonymous senses. As only senses with
the same category type can be synonymous, our
synonym resolution algorithm treats senses of each
type independently. For each category, ConceptRe-
solver trains a semi-supervised synonym classifier
then uses its predictions to cluster word senses.

Our key insight is that semantic relations and
string attributes provide independent views of the
data: we can predict that two noun phrases are syn-
onymous either based on the similarity of their text
strings, or based on similarity in the relations NELL
has extracted about them. As a concrete example,
we can decide that (“apple computer”, company)
and (“apple”, company) are synonymous because
the text string “apple” is similar to “apple computer,”
or because we have learned that (“steve jobs”, ceo)
is the CEO of both companies. ConceptResolver ex-
ploits these two independent views using co-training
(Blum and Mitchell, 1998) to produce an accurate
synonym classifier using only a handful of labels.

4.2.1 Co-Training the Synonym Classifier
For each category, ConceptResolver co-trains a pair
of synonym classifiers using a handful of labeled
synonymous senses and a large number of automat-
ically created unlabeled sense pairs. Co-training is
a semi-supervised learning algorithm for data sets
where each instance can be classified from two (or
more) independent sets of features. That is, the fea-
tures of each instance xi can be partitioned into two
views, xi = (x1

i , x
2
i ), and there exist functions in

each view, f1, f2, such that f1(x1
i ) = f2(x2

i ) = yi.
The co-training algorithm uses a bootstrapping pro-
cedure to train f1, f2 using a small set of labeled ex-
amples L and a large pool of unlabeled examples U .
The training process repeatedly trains each classifier
on the labeled examples, then allows each classifier
to label some examples in the unlabeled data pool.

Co-training also has PAC-style theoretical guaran-
tees which show that it can learn classifiers with ar-
bitrarily high accuracy under appropriate conditions
(Blum and Mitchell, 1998).

Figure 4 provides high-level pseudocode for co-
training in the context of ConceptResolver. In Con-
ceptResolver, an instance xi is a pair of senses (e.g.,
<(“apple”, company), (“microsoft”, company)>),
the two views x1

i and x2
i are derived from string

attributes and semantic relations, and the output yi

is whether the senses are synonyms. (The features
of each view are described later in this section.) L
is initialized with a small number of labeled sense
pairs. Ideally, U would contain all pairs of senses
in the category, but this set grows quadratically in
category size. Therefore, ConceptResolver uses the
canopies algorithm (McCallum et al., 2000) to ini-
tialize U with a subset of the sense pairs that are
more likely to be synonymous.

Both the string similarity classifier and the rela-
tion classifier are trained using L2-regularized lo-
gistic regression. The regularization parameter λ is
automatically selected on each iteration by search-
ing for a value which maximizes the loglikelihood
of a validation set, which is constructed by ran-
domly sampling 25% of L on each iteration. λ is
re-selected on each iteration because the initial la-
beled data set is extremely small, so the initial vali-
dation set is not necessarily representative of the ac-
tual data. In our experiments, the initial validation
set contains only 15 instances.

The string similarity classifier bases its decision
on the original noun phrase which mapped to each
sense. We use several string similarity measures as
features, including SoftTFIDF (Cohen et al., 2003),
Level 2 JaroWinkler (Cohen et al., 2003), Fellegi-
Sunter (Fellegi and Sunter, 1969), and Monge-Elkan
(Monge and Elkan, 1996). The first three algorithms
produce similarity scores by matching words in the
two phrases and the fourth is an edit distance. We
also use a heuristic abbreviation detection algorithm
(Schwartz and Hearst, 2003) and convert its output
into a score by dividing the length of the detected
abbreviation by the total length of the string.

The relation classifier’s features capture several
intuitive ways to determine that two items are syn-
onyms from the items they are related to. The re-
lation view contains three features for each relation
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For each category C:

1. Initialize labeled data L with 10 positive and 50
negative examples (pairs of senses)

2. Initialize unlabeled data U by running canopies
(McCallum et al., 2000) on all senses in C.

3. Repeat 50 times:

i. Train the string similarity classifier on L
ii. Train the relation classifier on L

iii. Label U with each classifier
iv. Add the most confident 5 positive and 25

negative predictions of both classifiers to L

Figure 4: The co-training algorithm for learning synonym
classifiers.

r whose domain is compatible with the current cat-
egory. Consider the sense pair (s, t), and let r(s)
denote s’s values for relation r (i.e., r(s) = {v :
r(s, v)}). For each relation r, we instantiate the fol-
lowing features:

• (Senses which share values are synonyms)
The percent of values of r shared by both s and t,
that is |r(s)∩r(t)|

|r(s)∪r(t)| .

• (Senses with different values are not synonyms)
The percent of values of r not shared by s and t, or
1 − |r(s)∩r(t)|

|r(s)∪r(t)| . The feature is set to 0 if either r(s)
or r(t) is empty. This feature is only instantiated if
the ontology specifies that r has at most one value
per sense.

• (Some relations indicate synonymy) A boolean
feature which is true if t ∈ r(s) or s ∈ r(t).

The output of co-training is a pair of classifiers for
each category. We combine their predictions using
the assumption that the two views X1, X2 are con-
ditionally independent given Y . As we trained both
classifiers using logistic regression, we have models
for the probabilities P (Y |X1) and P (Y |X2). The
conditional independence assumption implies that
we can combine their predictions using the formula:

P (Y = 1|X1, X2) =

P (Y = 1|X1)P (Y = 1|X2)P (Y = 0)∑
y=0,1 P (Y = y|X1)P (Y = y|X2)(1− P (Y = y))

The above formula involves a prior term, P (Y ),
because the underlying classifiers are discrimina-
tive. We set P (Y = 1) = .5 in our experi-
ments as this setting reduces our dependence on the

(typically poorly calibrated) probability estimates of
logistic regression. We also limited the probabil-
ity predictions of each classifier to lie in [.01, .99]
to avoid divide-by-zero errors. The probability
P (Y |X1, X2) is the final synonym classifier which
is used for agglomerative clustering.

4.2.2 Agglomerative Clustering
The second step of our algorithm runs agglomera-
tive clustering to enforce transitivity constraints on
the predictions of the co-trained synonym classifier.
As noted in previous works (Snow et al., 2006), syn-
onymy is a transitive relation. If a and b are syn-
onyms, and b and c are synonyms, then a and c must
also be synonyms. Unfortunately, co-training is not
guaranteed to learn a function that satisfies these
transitivity constraints. We enforce the constraints
by running agglomerative clustering, as clusterings
of instances trivially satisfy the transitivity property.

ConceptResolver uses the clustering algorithm
described by Snow et al. (2006), which defines a
probabilistic model for clustering and a procedure to
(locally) maximize the likelihood of the final cluster-
ing. The algorithm is essentially bottom-up agglom-
erative clustering of word senses using a similarity
score derived from P (Y |X1, X2). The similarity
score for two senses is defined as:

log
P (Y = 0)P (Y = 1|X1, X2)
P (Y = 1)P (Y = 0|X1, X2)

The similarity score for two clusters is the sum of
the similarity scores for all pairs of senses. The ag-
glomerative clustering algorithm iteratively merges
the two most similar clusters, stopping when the
score of the best possible pair is below 0. The clus-
ters of word senses produced by this process are the
concepts for each category.

5 Evaluation

We perform several experiments to measure Con-
ceptResolver’s performance at each of its respective
tasks. The first experiment evaluates word sense in-
duction using Freebase as a canonical set of con-
cepts. The second experiment evaluates synonym
resolution by comparing ConceptResolver’s sense
clusters to a gold standard clustering.

For both experiments, we used a knowledge base
created by running 140 iterations of NELL. We pre-
processed this knowledge base by removing all noun
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phrases with zero extracted relations. As Concept-
Resolver treats the instances of each category pred-
icate independently, we chose 7 categories from
NELL’s ontology to use in the evaluation. The cat-
egories were selected on the basis of the number of
extracted relations that ConceptResolver could use
to detect synonyms. The number of noun phrases
in each category is shown in Table 2. We manually
labeled 10 pairs of synonymous senses for each of
these categories. The system automatically synthe-
sized 50 negative examples from the positive exam-
ples by assuming each pair represents a distinct con-
cept, so senses in different pairs are not synonyms.

5.1 Word Sense Induction Evaluation

Our first experiment evaluates the performance of
ConceptResolver’s category-based word sense in-
duction. We estimate two quantities: (1) sense pre-
cision, the fraction of senses created by our system
that correspond to real-world entities, and (2) sense
recall, the fraction of real-world entities that Con-
ceptResolver creates senses for. Sense recall is only
measured over entities which are represented by a
noun phrase in ConceptResolver’s input assertions –
it is a measure of ConceptResolver’s ability to cre-
ate senses for the noun phrases it is given. Sense
precision is directly determined by how frequently
NELL’s extractors propose correct senses for noun
phrases, while sense recall is related to the correct-
ness of the one-sense-per-category assumption.

Precision and recall were evaluated by comparing
the senses created by ConceptResolver to concepts
in Freebase (Bollacker et al., 2008). We sampled
100 noun phrases from each category and matched
each noun phrase to a set of Freebase concepts. We
interpret each matching Freebase concept as a sense
of the noun phrase. We chose Freebase because it
had good coverage for our evaluation categories.

To align ConceptResolver’s senses with Freebase,
we first matched each of our categories with a set of
similar Freebase categories2. We then used a com-
bination of Freebase’s search API and Mechanical
Turk to align noun phrases with Freebase concepts:
we searched for the noun phrase in Freebase, then
had Mechanical Turk workers label which of the

2In Freebase, concepts are called Topics and categories are
called Types. For clarity, we use our terminology throughout.

Freebase
Category Precision Recall concepts

per Phrase
athlete 0.95 0.56 1.76
city 0.97 0.25 3.86
coach 0.86 0.94 1.06
company 0.85 0.41 2.41
country 0.74 0.56 1.77
sportsteam 0.89 0.30 3.28
stadiumoreventvenue 0.83 0.61 1.63

Table 1: ConceptResolver’s word sense induction perfor-
mance

Figure 5: Empirical distribution of the number of Free-
base concepts per noun phrase in each category

top 10 resulting Freebase concepts the noun phrase
could refer to. After obtaining the list of matching
Freebase concepts for each noun phrase, we com-
puted sense precision as the number of noun phrases
matching ≥ 1 Freebase concept divided by 100, the
total number of noun phrases. Sense recall is the re-
ciprocal of the average number of Freebase concepts
per noun phrase. Noun phrases matching 0 Freebase
concepts were not included in this computation.

The results of the evaluation in Table 1 show
that ConceptResolver’s word sense induction works
quite well for many categories. Most categories have
high precision, while recall varies by category. Cat-
egories like coach are relatively unambiguous, with
almost exactly 1 sense per noun phrase. Other cate-
gories have almost 4 senses per noun phrase. How-
ever, this average is somewhat misleading. Figure
5 shows the distribution of the number of concepts
per noun phrase in each category. The distribution
shows that most noun phrases are unambiguous, but
a small number of noun phrases have a large num-
ber of senses. In many cases, these noun phrases
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are generic terms for many items in the category; for
example, “palace” in stadiumoreventvenue refers
to 10 Freebase concepts. Freebase’s category def-
initions are also overly technical in some cases –
for example, Freebase’s version of company has a
concept for each registered corporation. This defi-
nition means that some companies like Volkswagen
have more than one concept (in this case, 9 con-
cepts). These results suggest that the one-sense-per-
category assumption holds for most noun phrases.

An important footnote to this evaluation is that the
categories in NELL’s ontology are somewhat arbi-
trary, and that creating subcategories would improve
sense recall. For example, we could define subcat-
egories of sportsteam for various sports (e.g., foot-
ball team); these new categories would allow Con-
ceptResolver to distinguish between teams with the
same name that play different sports. Creating sub-
categories could improve performance in categories
with a high level of polysemy.

5.2 Synonym Resolution Evaluation

Our second experiment evaluates synonym resolu-
tion by comparing the concepts created by Concept-
Resolver to a gold standard set of concepts. Al-
though this experiment is mainly designed to eval-
uate ConceptResolver’s ability to detect synonyms,
it is somewhat affected by the word sense induc-
tion process. Specifically, the gold standard cluster-
ing contains noun phrases that refer to multiple con-
cepts within the same category. (It is unclear how
to create a gold standard clustering without allowing
such mappings.) The word sense induction process
produces only one of these mappings, which limits
maximum possible recall in this experiment.

For this experiment, we report two different mea-
sures of clustering performance. The first measure
is the precision and recall of pairwise synonym de-
cisions, typically known as cluster precision and re-
call. We dub this the clustering metric. We also
adopt the precision/recall measure from Resolver
(Yates and Etzioni, 2007), which we dub the Re-
solver metric. The Resolver metric aligns each pro-
posed cluster containing ≥ 2 senses with a gold
standard cluster (i.e., a real-world concept) by se-
lecting the cluster that a plurality of the senses in the
proposed cluster refer to. Precision is then the frac-
tion of senses in the proposed cluster which are also

in the gold standard cluster; recall is computed anal-
ogously by swapping the roles of the proposed and
gold standard clusters. Resolver precision can be in-
terpreted as the probability that a randomly sampled
sense (in a cluster with at least 2 senses) is in a clus-
ter representing its true meaning. Incorrect senses
were removed from the data set before evaluating
precision; however, these senses may still affect per-
formance by influencing the clustering process.

Precision was evaluated by sampling 100 random
concepts proposed by ConceptResolver, then manu-
ally scoring each concept using both of the metrics
above. This process mimics aligning each sampled
concept with its best possible match in a gold stan-
dard clustering, then measuring precision with re-
spect to the gold standard.

Recall was evaluated by comparing the system’s
output to a manually constructed set of concepts for
each category. To create this set, we randomly sam-
pled noun phrases from each category and manually
matched each noun phrase to one or more real-world
entities. We then found other noun phrases which re-
ferred to each entity and created a concept for each
entity with at least one unambiguous reference. This
process can create multiple senses for a noun phrase,
depending on the real-world entities represented in
the input assertions. We only included concepts con-
taining at least 2 senses in the test set, as singleton
concepts do not contribute to either recall metric.
The size of each recall test set is listed in Table 2;
we created smaller test sets for categories where syn-
onyms were harder to find. Incorrectly categorized
noun phrases were not included in the gold standard
as they do not correspond to any real-world entities.

Table 2 shows the performance of ConceptRe-
solver on each evaluation category. For each cat-
egory, we also report the baseline recall achieved
by placing each sense in its own cluster. Concept-
Resolver has high precision for several of the cate-
gories. Other categories like athlete and city have
somewhat lower precision. To make this difference
concrete, Figure 2 (first page) shows a random sam-
ple of 10 concepts from both company and athlete.
Recall varies even more widely across categories,
partly because the categories have varying levels of
polysemy, and partly due to differences in average
concept size. The differences in average concept
size are reflected in the baseline recall numbers.
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Resolver Metric Clustering Metric

Category
# of Recall

Precision Recall F1
Baseline

Precision Recall F1
Baseline

Phrases Set Size Recall Recall
athlete 3886 80 0.69 0.69 0.69 0.46 0.41 0.45 0.43 0.00
city 5710 50 0.66 0.52 0.58 0.42 0.30 0.10 0.15 0.00
coach 889 60 0.90 0.93 0.91 0.43 0.83 0.88 0.85 0.00
company 3553 60 0.93 0.71 0.81 0.39 0.79 0.44 0.57 0.00
country 693 60 0.98 0.50 0.66 0.30 0.94 0.15 0.26 0.00
sportsteam 2085 100 0.95 0.48 0.64 0.29 0.87 0.15 0.26 0.00
stadiumoreventvenue 1662 100 0.84 0.73 0.78 0.39 0.65 0.49 0.56 0.00

Table 2: Synonym resolution performance of ConceptResolver

We attribute the differences in precision across
categories to the different relations available for
each category. For example, none of the relations for
athlete uniquely identify a single athlete, and there-
fore synonymy cannot be accurately represented in
the relation view. Adding more relations to NELL’s
ontology may improve performance in these cases.

We note that the synonym resolution portion of
ConceptResolver is tuned for precision, and that per-
fect recall is not necessarily attainable. Many word
senses participate in only one relation, which may
not provide enough evidence to detect synonymy.
As NELL continually extracts more knowledge, it
is reasonable for ConceptResolver to abstain from
these decisions until more evidence is available.

6 Discussion
In order for information extraction systems to ac-
curately represent knowledge, they must represent
noun phrases, concepts, and the many-to-many map-
ping from noun phrases to concepts they denote. We
present ConceptResolver, a system which takes ex-
tracted relations between noun phrases and identifies
latent concepts that the noun phrases refer to. Two
lessons from ConceptResolver are that (1) ontolo-
gies aid word sense induction, as the senses of pol-
ysemous words tend to have distinct semantic types,
and (2) redundant information, in the form of string
similarity and extracted relations, helps train accu-
rate synonym classifiers.

An interesting aspect of ConceptResolver is that
its performance should improve as NELL’s ontol-
ogy and knowledge base grow in size. Defining
finer-grained categories will improve performance
at word sense induction, as more precise categories
will contain fewer ambiguous noun phrases. Both
extracting more relation instances and adding new
relations to the ontology will improve synonym res-

olution. These scaling properties allow manual ef-
fort to be spent on high-level ontology operations,
not on labeling individual instances. We are inter-
ested in observing ConceptResolver’s performance
as NELL’s ontology and knowledge base grow.

For simplicity of exposition, we have implicitly
assumed thus far that the categories in NELL’s on-
tology are mutually exclusive. However, the ontol-
ogy contains compatible categories like male and
politician, where a single concept can belong to
both categories. In these situations, the one-sense-
per-category assumption may create too many word
senses. We currently address this problem with a
heuristic post-processing step: we merge all pairs of
concepts that belong to compatible categories and
share at least one referring noun phrase. This heuris-
tic typically works well, however there are prob-
lems. An example of a problematic case is “obama,”
which NELL believes is a male, female, and politi-
cian. In this case, the heuristic cannot decide which
“obama” (the male or female) is the politician. As
such cases are fairly rare, we have not developed a
more sophisticated solution to this problem.

ConceptResolver has been integrated into NELL’s
continual learning process. NELL’s current set of
concepts can be viewed through the knowledge base
browser on NELL’s website, http://rtw.ml.
cmu.edu.
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