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Abstract

This paper presents a comparative study of
target dependency structures yielded by sev-
eral state-of-the-art linguistic parsers. Our ap-
proach is to measure the impact of these non-
isomorphic dependency structures to be used
for string-to-dependency translation. Besides
using traditional dependency parsers, we also
use the dependency structures transformed
from PCFG trees and predicate-argument
structures (PASs) which are generated by an
HPSG parser and a CCG parser. The experi-
ments on Chinese-to-English translation show
that the HPSG parser’s PASs achieved the best
dependency and translation accuracies.

1 Introduction

Target language side dependency structures have
been successfully used in statistical machine trans-
lation (SMT) by Shen et al. (2008) and achieved
state-of-the-art results as reported in the NIST 2008
Open MT Evaluation workshop and the NTCIR-9
Chinese-to-English patent translation task (Goto et
al., 2011; Ma and Matsoukas, 2011). A primary ad-
vantage of dependency representations is that they
have a natural mechanism for representing discon-
tinuous constructions, which arise due to long-
distance dependencies or in languages where gram-
matical relations are often signaled by morphology
instead of word order (McDonald and Nivre, 2011).

It is known that dependency-style structures can
be transformed from a number of linguistic struc-
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tures. For example, using the constituent-to-
dependency conversion approach proposed by Jo-
hansson and Nugues (2007), we can easily yield de-
pendency trees from PCFG style trees. A seman-
tic dependency representation of a whole sentence,
predicate-argument structures (PASs), are also in-
cluded in the output trees of (1) a state-of-the-art
head-driven phrase structure grammar (HPSG) (Pol-
lard and Sag, 1994; Sag et al., 2003) parser, Enju1

(Miyao and Tsujii, 2008) and (2) a state-of-the-art
CCG parser2 (Clark and Curran, 2007). The moti-
vation of this paper is to investigate the impact of
these non-isomorphic dependency structures to be
used for SMT. That is, we would like to provide a
comparative evaluation of these dependencies in a
string-to-dependency decoder (Shen et al., 2008).

2 Gaining Dependency Structures

2.1 Dependency tree

We follow the definition of dependency graph and
dependency tree as given in (McDonald and Nivre,
2011). A dependency graph G for sentence s is
called a dependency tree when it satisfies, (1) the
nodes cover all the words in s besides the ROOT;
(2) one node can have one and only one head (word)
with a determined syntactic role; and (3) the ROOT
of the graph is reachable from all other nodes.

For extracting string-to-dependency transfer
rules, we use well-formed dependency structures,
either fixed or floating, as defined in (Shen et al.,
2008). Similarly, we ignore the syntactic roles

1http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html
2http://groups.inf.ed.ac.uk/ccg/software.html
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Figure 1: HPSG tree of an example sentence. ‘*’/
‘+’=syntactic/semantic heads. Arrows in red (upper)=
PASs, orange (bottom)=word-level dependencies gener-
ated from PASs, blue=newly appended dependencies.

both during rule extracting and target dependency
language model (LM) training.

2.2 Dependency parsing

Graph-based and transition-based are two predom-
inant paradigms for data-driven dependency pars-
ing. The MST parser (McDonald et al., 2005) and
the Malt parser (Nivre, 2003) stand for two typical
parsers, respectively. Parsing accuracy comparison
and error analysis under the CoNLL-X dependency
shared task data (Buchholz and Marsi, 2006) have
been performed by McDonald and Nivre (2011).
Here, we compare them on the SMT tasks through
parsing the real-world SMT data.

2.3 PCFG parsing

For PCFG parsing, we select the Berkeley parser
(Petrov and Klein, 2007). In order to generate word-
level dependency trees from the PCFG tree, we use
the LTH constituent-to-dependency conversion tool3

written by Johansson and Nugues (2007). The head
finding rules4 are according to Magerman (1995)
and Collins (1997). Similar approach has been orig-
inally used by Shen et al. (2008).

2.4 HPSG parsing

In the Enju English HPSG grammar (Miyao et al.,
2003) used in this paper, the semantic content of

3http://nlp.cs.lth.se/software/treebank converter/
4http://www.cs.columbia.edu/ mcollins/papers/heads

a sentence/phrase is represented by a PAS. In an
HPSG tree, each leaf node generally introduces a
predicate, which is represented by the pair made up
of the lexical entry feature and predicate type fea-
ture. The arguments of a predicate are designated by
the arrows from the argument features in a leaf node
to non-terminal nodes (e.g., t0→c3, t0→c16).

Since the PASs use the non-terminal nodes in the
HPSG tree (Figure 1), this prevents their direct us-
age in a string-to-dependency decoder. We thus need
an algorithm to transform these phrasal predicate-
argument dependencies into a word-to-word depen-
dency tree. Our algorithm (refer to Figure 1 for an
example) for changing PASs into word-based depen-
dency trees is as follows:

1. finding, i.e., find the syntactic/semantic head
word of each argument node through a bottom-
up traversal of the tree;

2. mapping, i.e., determine the arc directions
(among a predicate word and the syntac-
tic/semantic head words of the argument nodes)
for each predicate type according to Table 1.
Then, a dependency graph will be generated;

3. checking, i.e., post modifying the dependency
graph according to the definition of dependency
tree (Section 2.1).

Table 1 lists the mapping from HPSG’s PAS types
to word-level dependency arcs. Since a non-terminal
node in an HPSG tree has two kinds of heads, syn-
tactic or semantic, we will generate two dependency
graphs after mapping. We use “PAS+syn” to repre-
sent the dependency trees generated from the HPSG
PASs guided by the syntactic heads. For semantic
heads, we use “PAS+sem”.

For example, refer to t0 = when in Figure 1.
Its arg1 = c16 (with syntactic head t10), arg2
= c3 (with syntactic head t6), and PAS type =
conj arg12. In Table 1, this PAS type corresponds
to arg2→pred→arg1, then the result word-level de-
pendency is t6(is)→t0(when)→t10(is).

We need to post modify the dependency graph af-
ter applying the mapping, since it is not guaranteed
to be a dependency tree. Referring to the definition
of dependency tree (Section 2.1), we need the strat-
egy for (1) selecting only one head from multiple
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PAS Type Dependency Relation
adj arg1[2] [arg2 →] pred → arg1
adj mod arg1[2] [arg2 →] pred → arg1 → mod
aux[ mod] arg12 arg1/pred → arg2 [→ mod]
conj arg1[2[3]] [arg2[/arg3]] → pred → arg1
comp arg1[2] pred → arg1 [→ arg2]
comp mod arg1 arg1 → pred → mod
noun arg1 pred → arg1
noun arg[1]2 arg2 → pred [→ arg1]
poss arg[1]2 pred → arg2 [→ arg1]
prep arg12[3] arg2[/arg3] → pred → arg1
prep mod arg12[3] arg2[/arg3] → pred → arg1 → mod
quote arg[1]2 [arg1 →] pred → arg2
quote arg[1]23 [arg1/]arg3 → pred → arg2
lparen arg123 pred/arg2 → arg3 → arg1
relative arg1[2] [arg2 →] pred → arg1
verb arg1[2[3[4]]] arg1[/arg2[/arg3[/arg4]]] → pred
verb mod arg1[2[3[4]]] arg1[/arg2[/arg3[/arg4]]]→pred→mod
app arg12,coord arg12 arg2/pred → arg1
det arg1,it arg1,punct arg1 pred → arg1
dtv arg2 pred → arg2
lgs arg2 arg2 → pred

Table 1: Mapping from HPSG’s PAS types to dependency
relations. Dependent(s) → head(s), / = and, [] = optional.

heads and (2) appending dependency relations for
those words/punctuation that do not have any head.
When one word has multiple heads, we only keep
one. The selection strategy is that, if this arc was
deleted, it will cause the biggest number of words
that can not reach to the root word anymore. In case
of a tie, we greedily pack the arc that connect two
words wi and wj where |i− j| is the biggest. For all
the words and punctuation that do not have a head,
we greedily take the root word of the sentence as
their heads. In order to fully use the training data,
if there are directed cycles in the result dependency
graph, we still use the graph in our experiments,
where only partial dependency arcs, i.e., those target
flat/hierarchical phrases attached with well-formed
dependency structures, can be used during transla-
tion rule extraction.

2.5 CCG parsing

We also use the predicate-argument dependencies
generated by the CCG parser developed by Clark
and Curran (2007). The algorithm for generating
word-level dependency tree is easier than processing
the PASs included in the HPSG trees, since the word
level predicate-argument relations have already been
included in the output of CCG parser. The mapping
from predicate types to the gold-standard grammat-
ical relations can be found in Table 13 in (Clark and

Curran, 2007). The post-processing is like that de-
scribed for HPSG parsing, except we greedily use
the MST’s sentence root when we can not determine
it based on the CCG parser’s PASs.

3 Experiments

3.1 Setup
We re-implemented the string-to-dependency de-
coder described in (Shen et al., 2008). Dependency
structures from non-isomorphic syntactic/semantic
parsers are separately used to train the transfer
rules as well as target dependency LMs. For intu-
itive comparison, an outside SMT system is Moses
(Koehn et al., 2007).

For Chinese-to-English translation, we use the
parallel data from NIST Open Machine Translation
Evaluation tasks. The training data contains 353,796
sentence pairs, 8.7M Chinese words and 10.4M En-
glish words. The NIST 2003 and 2005 test data
are respectively taken as the development and test
set. We performed GIZA++ (Och and Ney, 2003)
and the grow-diag-final-and symmetrizing strategy
(Koehn et al., 2007) to obtain word alignments. The
Berkeley Language Modeling Toolkit, berkeleylm-
1.0b35 (Pauls and Klein, 2011), was employed to
train (1) a five-gram LM on the Xinhua portion of
LDC English Gigaword corpus v3 (LDC2007T07)
and (2) a tri-gram dependency LM on the English
dependency structures of the training data. We re-
port the translation quality using the case-insensitive
BLEU-4 metric (Papineni et al., 2002).

3.2 Statistics of dependencies
We compare the similarity of the dependencies with
each other, as shown in Table 2. Basically, we in-
vestigate (1) if two dependency graphs of one sen-
tence share the same root word and (2) if the head of
one word in one sentence are identical in two depen-
dency graphs. In terms of root word comparison, we
observe that MST and CCG share 87.3% of iden-
tical root words, caused by borrowing roots from
MST to CCG. Then, it is interesting that Berkeley
and PAS+syn share 74.8% of identical root words.
Note that the Berkeley parser is trained on the Penn
treebank (Marcus et al., 1994) yet the HPSG parser
is trained on the HPSG treebank (Miyao and Tsujii,

5http://code.google.com/p/berkeleylm/
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Dependency Precision Recall BLEU-Dev BLEU-Test # phrases # hier rules # illegal dep trees # directed cycles
Moses-1 - - 0.3349 0.3207 5.4M - - -
Moses-2 - - 0.3445 0.3262 0.7M 4.5M - -
MST 0.744 0.750 0.3520 0.3291 2.4M 2.1M 251 0
Malt 0.732 0.738 0.3423 0.3203 1.5M 1.3M 130,960 0
Berkeley 0.800 0.806 0.3475 0.3312 2.4M 2.2M 282 0
PAS+syn 0.818 0.824 0.3499 0.3376 2.2M 1.9M 10,411 5,853
PAS+sem 0.777 0.782 0.3484 0.3343 2.1M 1.6M 14,271 9,747
CCG 0.701 0.705 0.3442 0.3283 1.7M 1.3M 61,015 49,955

Table 3: Comparison of dependency and translation accuracies. Moses-1 = phrasal, Moses-2 = hierarchical.

Malt Berkeley PAS PAS CCG
+syn +sem

MST 70.5 62.5 69.2 53.3 87.3
(77.3) (64.6) (58.5) (58.1) (61.7)

Malt 66.2 73.0 46.8 62.9
(63.2) (57.7) (56.6) (58.1)

Berkeley 74.8 44.2 56.5
(64.3) (56.0) (59.2)

PAS+ 59.3 62.9
syn (79.1) (61.0)
PAS+ 60.0
sem (58.8)

Table 2: Comparison of the dependencies of the English
sentences in the training data. Without () = % of similar
root words; with () = % of similar head words.

2008). In terms of head word comparison, PAS+syn
and PAS+sem share 79.1% of identical head words.
This is basically due to that we used the similar
PASs of the HPSG trees. Interestingly, there are only
59.3% identical root words shared by PAS+syn and
PAS+sem. This reflects the significant difference be-
tween syntactic and semantic heads.

We also manually created the golden dependency
trees for the first 200 English sentences in the train-
ing data. The precision/recall (P/R) are shown in
Table 3. We observe that (1) the translation accura-
cies approximately follow the P/R scores yet are not
that sensitive to their large variances, and (2) it is
still tough for domain-adapting from the treebank-
trained parsers to parse the real-world SMT data.
PAS+syn performed the best by avoiding the errors
of missing of arguments for a predicate, wrongly
identified head words for a linguistic phrase, and in-
consistency dependencies inside relatively long co-
ordinate structures. These errors significantly influ-
ence the number of extractable translation rules and
the final translation accuracies.

Note that, these P/R scores on the first 200 sen-
tences (all from less than 20 newswire documents)
shall only be taken as an approximation of the total

training data and not necessarily exactly follow the
tendency of the final BLEU scores. For example,
CCG is worse than Malt in terms of P/R yet with a
higher BLEU score. We argue this is mainly due to
that the number of illegal dependency trees gener-
ated by Malt is the highest. Consequently, the num-
ber of flat/hierarchical rules generated by using Malt
trees is the lowest. Also, PAS+sem has a lower P/R
than Berkeley, yet their final BLEU scores are not
statistically different.

3.3 Results

Table 3 also shows the BLEU scores, the number of
flat phrases and hierarchical rules (both integrated
with target dependency structures), and the num-
ber of illegal dependency trees generated by each
parser. From the table, we have the following ob-
servations: (1) all the dependency structures (except
Malt) achieved a significant better BLEU score than
the phrasal Moses; (2) PAS+syn performed the best
in the test set (0.3376), and it is significantly better
than phrasal/hierarchical Moses (p < 0.01), MST
(p < 0.05), Malt (p < 0.01), Berkeley (p < 0.05),
and CCG (p < 0.05); and (3) CCG performed as
well as MST and Berkeley. These results lead us to
argue that the robustness of deep syntactic parsers
can be advantageous in SMT compared with tradi-
tional dependency parsers.

4 Conclusion

We have constructed a string-to-dependency trans-
lation platform for comparing non-isomorphic tar-
get dependency structures. Specially, we proposed
an algorithm for generating word-based dependency
trees from PASs which are generated by a state-of-
the-art HPSG parser. We found that dependency
trees transformed from these HPSG PASs achieved
the best dependency/translation accuracies.
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