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Abstract 

School of thought analysis is an important yet 
not-well-elaborated scientific knowledge dis-
covery task. This paper makes the first attempt 
at this problem. We focus on one aspect of the 
problem: do characteristic school-of-thought 
words exist and whether they are characteriza-
ble? To answer these questions, we propose a 
probabilistic generative School-Of-Thought 
(SOT) model to simulate the scientific author-
ing process based on several assumptions. SOT 
defines a school of thought as a distribution of 
topics and assumes that authors determine the 
school of thought for each sentence before 
choosing words to deliver scientific ideas. SOT 
distinguishes between two types of school-of-
thought words for either the general back-
ground of a school of thought or the original 
ideas each paper contributes to its school of 
thought. Narrative and quantitative experi-
ments show positive and promising results to 
the questions raised above. 

1 Introduction 

With more powerful computational analysis tools, 
researchers are now devoting efforts to establish 
a “science of better science” by analyzing the 
ecosystem of scientific discovery (Goth, 2012). 
Amongst this ambition, school of thought analy-
sis has been identified an important fine-grained 
scientific knowledge discovery task. As men-
tioned by Teufel (2010), it is important for an 
experienced scientist to know which papers be-
long to which school of thought (or technical 
route) through years of knowledge accumulation. 
Schools of thought typically emerge with the 
evolution of a research domain or scientific topic.  

Take reachability indexing for example, which 
we will repeatedly turn to later, there are two 
schools of thought, the cover-based (since about 
1990) and hop-based (since the beginning of the 
2000s) methods. Most of the following works 
belong to either school of thought and thus two 
streams of innovative ideas emerge. Figure 1 il-
lustrates this situation. Two chains of subsequen-
tially published papers represent two schools of 
thought of the reachability indexing domain. The 
top chain of white double-line circles and the 
bottom chain of shaded circles represent the cov-
er-based and hop-based streams respectively.  

However it is not easy to gain this knowledge 
about school of thought. Current citation index-
ing services are not very helpful for this kind of 
knowledge discovery tasks. As explained in Fig-
ure 1, papers of different schools of thought cite 
each other heavily and form a rather dense cita-
tion graph. An extreme example is p14, which 
cites more hop-based papers than its own school 
of thought.  

If the current citation indexing service can be 
equipped with school of thought knowledge, it 
will help scientists, especially novice researchers, 
a lot in grasping the core ideas of a scientific 
domain quickly and making their own way of 
innovation (Upham et al., 2010). School of 
thought analysis is also useful for knowledge 

Figure 1. The citation graph of the reachability 
indexing domain (c.f. the RE data set in Table 1). 

———————————————— 
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flow discovery (Zhuge, 2006; Zhuge, 2012), 
knowledge mapping (Chen, 2004; Herrera et al., 
2010) and scientific paradigm summarization 
(Joang and Kan, 2010; Qazvinian et al., 2013) 
etc.  

This paper makes the first attempts to unsu-
pervised school of thought analysis. Three main 
aspects of school of thought analysis can be iden-
tified: determining the number of schools of 
thought, characterizing school-of-thought words 
and categorizing papers into one or several 
school(s) of thought (if applicable). This paper 
focuses on the second subproblem and leaves the 
other two as future work. Particularly, we pur-
pose to investigate whether characteristic school-
of-thought words exist and whether they can be 
automatically characterized. To answer these 
questions, we propose the probabilistic genera-
tive School-Of-Thought model (SOT for short) 
based on the following assumptions on the scien-
tific authoring process. 

Assumption A1. The co-occurrence patterns 
are useful for revealing which words and sen-
tences are school-of-thought words and which 
schools of thought they describe. Take reachabil-
ity indexing for example, hop-based papers try to 
get the “optimum labeling” by finding the 
“densest intermediate hops” to encode reach-
ability information captured by an intermediate 
data structure called “transitive closure con-
tour”. To accomplish this, they solve the “dens-
est subgraph problem” on specifically created 
“bipartite” graphs centered at “hops” by trans-
forming the problem into an equivalent “mini-
mum set cover” framework. Thus, these bold-
faced words often occur as hop-based school-of-
thought words. In cover-based methods, however, 
one or several “spanning tree(s)” are extracted 
and “(multiple) intervals” are assigned to each 
node as reachability labels by “pre-(order)” and 
“post-order traversals”. Meanwhile, graph the-
ory terminologies like “root”, “child” and “an-
cestor” etc. also frequently occur as cover-based 
school-of-thought words. 

Assumption A2. Before writing a sentence to 
deliver their ideas, the authors need to determine 
which school of thought this sentence is to por-
tray. This is called the one-sot-per-sentence as-
sumption, where “sot” abbreviates “school of 
thought”. The one-sot-per-sentence assumption 
does not mean that authors intentionally write 
this way, but only simulates the outcome of the 
scientific paper organization. Investigations into 
scientific writing reveal that sentences of differ-
ent schools of thought can occur anywhere and 
are often interleaved. This is because authors of a 
scientific paper not only contribute to the school 
of thought they follow but also discuss different 

schools of thought. For example, in the Method 
part, the authors may turn to discuss another pa-
per (possibly of a different school of thought) for 
comparison. This phenomenon also occurs fre-
quently in the Results or Discussions section. 
Besides, citation sentences often acknowledge 
related works of different schools of thought.  

Assumption A3. All the papers of a domain 
talk about the general domain backgrounds. For 
example, reachability indexing aims to build 
“compact indices” for facilitating “reachability 
queries” between “source” and “target nodes”. 
Other background words include “(complete) 
transitive closure”, “index size” and “reach” 
etc., as well as classical graph theory terminolo-
gies like “predecessors” and “successors” etc.  

Assumption A4. Besides contributing original 
ideas, papers of the same school of thought typi-
cally need to follow some general strategies that 
make them fall into the same school of thought. 
For example, all the hop-based methods follow 
the general ideas of designing approximate algo-
rithms for choosing good hops, while the original 
ideas of each paper lead to different labeling al-
gorithms. Scientific readers pay attention to the 
original ideas of each paper as well as the gen-
eral ideas of each school of thought. This as-
sumes that a word can be either a generality or 
originality word to deliver general and original 
ideas of a school of thought respectively.  

2 The School-of-Thought Model 

Figure 2 shows the proposed SOT model. SOT 
reflects all the assumptions made in Sect. 1. The 
plate notation follows Bishop (2006) where a 
shaded circle means an observed variable, in this 
context word occurrence in text, a white circle 
denotes either a latent variable or a model pa-
rameter, and a small solid dot represents a hyper-
parameter of the corresponding model parameter. 
The generative scientific authoring process illus-
trated in Figure 2 is elaborated as follows. 

Step 1. School of thought assignment (A2). 

Figure 2. The SOT Model 
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To simulate the one-sot-per-sentence assump-
tion, we introduce a latent school-of-thought as-
signment variable cd,s (1 ≤ cd,s ≤ C, where C is the 
number of schools of thought) for each sentence 
s in paper d, dependent on which are topic as-
signment and word occurrence variables. As dif-
ferent papers and their authors have different foci, 
flavors and writing styles, it is appropriate to as-
sume that each paper d has its own Dirichlet dis-
tribution of schools of thought ( )c c

d Dirπ α   
(refer to Heinrich (2008) for Dirichlet analysis of 
texts). cd,s is thus multinomially sampled from 

c
dπ , that is, , ( )c

d s dc Mutl π .  

Step 2. Background word emission (A3). 
Before choosing a word wd,s,n to deliver scien-

tific ideas, the authors first need to determine 
whether this word describes domain backgrounds 
or depicts a specific school-of-thought. This in-
formation is indicated by the latent background 
word indicator variable bd,s,n ( )b

dBern π , where 
0 1( , )b b b

d Betaπ α α is the probability of Bernoulli 
test. bd,s,n = 1 means wd,s,n is a background word 
that is multinomially sampled from the Dirichlet 
background word distribution ( )bg bgDirϕ β

  , 
i.e. , , ( )bg

d s nw Mutl ϕ . 
Step 3. Originality indicator assignment (A4). 

If bd,s,n = 0, wd,s,n is a school-of-thought word. 
Then the authors need to determine whether wd,s,n 
talks about the general ideas of a certain school 
of thought (i.e. a generality word when od,s,n = 0) 
or delivers original contributions to the specific 
school of thought (i.e. an originality word when 
od,s,n = 1). The latent originality indicator variable 
od,s,n is assigned in a similar way to bd,s,n. 

Step 4. Topical word emission. 
SOT regards schools of thought and topics as 

two different levels of semantic information. A 
school of thought is modeled as a distribution of 
topics discussed by the papers of a research do-
main. Each topic in turn is defined as a distribu-
tion of the topical words. Reflected in Figure 1, 

g
cθ


 and o
cθ


 are Dirichlet distributions of general-

ity and originality topics respectively, with gγ  
and oγ  being the Dirichlet priors. According to 
the assignment of the originality indicator, the 
topic td,s,n of the current token is multinomially 
selected from either g

cθ


 (od,s,n = 0) or o
cθ


 (od,s,n = 
1). After that, a word wd,s,n is multinomially emit-
ted from the topical word distribution 

, ,d s n

tp
tϕ , 

where ( )tp tp
t Dirϕ β   for each 1 ≤ t ≤ T. 

Gibbs sampling is used for SOT model infer-
ence. Considering the logic of presentation, it is 
detailed in Appendix B.  

3 Experiments  

3.1 Datasets 

Lacking standard test benchmarks, we compiled 
7 data sets according to well-known recent sur-
veys (see Appendix A). Each data set consists of 
several dozens of papers of the same domain. 
When constructing these data sets, the only place 
of human intervention is the de-duplication step, 
which means typically only one of a number of 
highly duplicated references is kept in the data 
set. Different from previous studies reviewed in 
Sect. 4, full texts but not abstracts are used. We 
extracted texts from the collected papers and re-
moved tables, figures and sentences full of math 
equations or unrecognizable symbols. The statis-
tics of the resulting data sets are listed in Table 1. 
The gold-standard number and the classification 
of schools of thoughts reflect not only the view-
points of the survey authors but also the consen-
sus of the corresponding research communities. 

3.2 Qualitative Results 

This section looks at the capabilities of SOT in 
learning background and school-of-thought words 
using the RE data set as an example. Given the 
estimated model parameters, the distributions of 
the school-of-thought words of SOT can be cal-
culated as weighted sums of topical word emis-
sion probabilities ( ,

tp
t wϕ  for each word w) over all 

the topics (t) and papers (d), as in Eq. (1).  

DATA 

SETS 
NL W S 

Nd 
(avg) 

C 
SCHOOLS OF THOUGHT  
(NUMBER OF PAPERS UNDER THIS SCHOOL OF THOUGHT) 

RE 18 54035 5300 294 2 Hop-Based (9), Cover-Based (9) 
NP 24 36227 3329 138 3 Mention-Pair Models (14), Entity-Mention Models (5), Ranking Models (5) 

PP 20 21941 2182 109 4 
Using Single Monolingual Corpus (3), Using Monolingual Parallel Corpora (6), Using Monolingual 
Comparable Corpora (5), Using Bilingual Parallel Corpora (5) 

TE 34 55671 5335 156 2 Finite-State Transducer models (17), Synchronous Context-Free Grammar models (17) 

WA 18 19219 1807 100 3 Asymmetric Models (5), Symmetric Alignment Models (9), Supervised Learning for Alignment (4)
DP 56 68384 6021 107 3 Transition-Based (20), Graph-Based (17), Grammar-Based (19) 
LR 44 77024 7395 168 3 Point-wise Approach (11), Pair-wise Approach (17), List-wise Approach (16) 

Notes: RE – REachability indexing; NP – Noun Phrase co-reference resolution; PP – ParaPhrase; TE – Translational Equivalence; WA – 
Word Alignment; DP – Dependency Parsing; LR – Learning to Rank; W – number of words; S – number of sentences; C – gold-standard 
number of schools of thought; Nd − number of sentences in document d. 

Table 1. Data Sets 
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The first row of Table 2 lists the top-60 back-
ground and school-of-thought words learned by 
SOT for the RE data set sorted in descending or-
der of their probabilities column by column. The 
words at the bottom are some of the remaining 
characteristic words together with their positions 
on the top-120 list. In the experiments, T is set to 
20. As the data sets are relative small, it is not 
appropriate to set T too large, otherwise most of 
the topics are meaningless or duplicate. Either 
case will impose additive negative influences on 
the usefulness of the model, for example when 
applied to schools of thought clustering in the 
next section. C is set to the gold-standard number 
of schools of thought as in this study we are 
mainly interested in whether school-of-thought 
words are characterizable. The problems of iden-
tifying the existence and number of schools of 
thought are left to future work. Other parameter 
settings follow Griffiths and Steyvers (2010). 
The learned word distributions are shown very 
meaningful at the first glance. They are further 
explained as follows. 

For domain backgrounds, reachability index-
ing is a classical problem of the graph database 
“domain” which talks about the reachability be-
tween the “source” and “destination nodes” on 
a “graph”. Reachability “index” or “indices” 
aim at a “reduction” of the “transitive closure” 
so as to make the “required storage” smaller. 

All current works preprocess the input graphs by 
“merging strongly connected components” 
into representative nodes to remove “cycles”. 

We then give a deep investigation into the 
hop-based school-of-thought words (SoT-2). 
Cover-based ones conform well to the assump-
tions in Sect. 1 too. “2-hop”, “3-hop” and “path-
hop” are three representative hop-based reacha-
bility “labeling schemes” (a phrase preferred 
by hop-based papers). Hop-based methods aim at 
“finding” the “optimum labeling” with “mini-
mum cost” and achieving a higher “compres-
sion ratio” than cover-based methods. To ac-
complish this, hop-based methods define a 
“densest subgraph problem” on a “bipartite” 
graph, transform it to an equivalent “set cover” 
problem, and then apply “greedy” algorithms 
based on several “heuristics” to find “approxi-
mate” solutions. The “intermediate hops” with 
the highest “density” are found as labels and 
assigned to “Lout” and “Lin” of certain “contour” 
vertices. “contour” is used by hop-based meth-
ods as a concise representation of the remaining 
to-be-encoded reachability information.  

The underlined bold italic words such as “set” 
and “cover” are misleading (yet not necessarily 
erroneous) words as both schools of thought use 
them heavily, but in quite different contexts, for 
example, a “set” of labels versus “set cover”, 
and “cover(s)” partial reachability information 
versus tree “cover”. To improve, one of our fu-
ture works shall integrate multi-word expressions 
or n-grams (Wallach, 2006) and syntactic analy-
sis (Griffiths et al., 2004) into the current model. 

BACKGROUND WORDS 
SCHOOL-OF-THOUGHT WORDS 

SOT-1 (COVER-BASED) SOT-2 (HOP-BASED) 
node   arc   figure   node reachable find 2-hop   problem   hop   
closure   size   deleted   graph reach reachability vertex   tree   subgraph 
chain   lists   incremental   nodes size cover vertices  edges   proposed  
graph   procedure predecessor   closure chains acyclic cover construction   large   
nodes   arcs   directed   tree graphs database graph   approach   path-hop   
compressed update   edge   edges storage traversal algorithm indexing lin   
list   off-chain   systems   chain instance components size  contour spanning  
transitive acyclic   connected   transitive intervals directed chain   processing smaller   
successor reduction techniques   non-tree spanning lists labeling   chain  optimal   
compression relation   single   number segment reduction closure  pairs densest   
storage   source   cycles   compressed order g. reachability compression decomposition
chains   reach   updates   path connected addition transitive  reachable   dag   
required effort   depth   edge component technique graphs  property   paths  
index   obtained   materialize   index case degree time   figure   data   
number   component concatenation  list postorder gs number  path-tree   ratio   
database path   presented   set strongly successors 3-hop   bipartite   nodes  
case   assignment added   interval original structure index   scheme   edge   
technique   predecessors original  successor ris single labels   density   finding   
degree   addition   components   figure required paths query  queries   rank   
successors indices   strongly   compression source arc set   reach   note 
destination (65), determine (76), pair 
(77), resulting (84), merging (86), 
reached (87), store (96) 

root (67), pre- (85), topological (96), sub-
tree (102), ancestor (105), child (106), 
multiple (113), preorder (117)

lout (66), segment (68), minimum (69), in-
termediate (77), greedy (87), faster (88), 
heuristics (92), approximate (120) 

Table 2. The distributions of top-120 background and school-of-thought words. 
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3.3 Quantitative Results 

To see the usefulness of school-of-thought words, 
we use the SOT model as a way to feature space 
reduction for a more precise text representation 
in the school-of-thought clustering task. A subset 
of school-of-thought words whose accumulated 
probability exceeds a given threshold fsThr are 
used as the reduced feature vector. Text is repre-
sented in the vector space model weighted using 
tf⋅idf. K-means is used for clustering. To obtain a 
stable and reliable result, we choose 300 random 
seeds as initial cluster centroids, run K-means 
300 times and, following the heuristic suggestion 
by Manning et al. (2009), output the best cluster-
ing by the minimum residual squared sum prin-
ciple. Two baselines are the “RAW” method 
without dimension reduction and LDA-based 
(Blei et al., 2003) feature selection. Table 3 re-
ports the F-measure values of different competi-
tors. In the parentheses are the corresponding 
threshold values under which the reported clus-
tering result is obtained. The larger the threshold 
value is, the less effective the method in dimen-
sion reduction. 

Compared to the baselines, SOT has consist-
ently the best clustering qualities. When fsThr ≤ 
0.70, the feature space is reduced from several 
thousand words to only a few hundreds. LDA is 
typically better than RAW (except on LR) but 
less efficient in dimension reduction, e.g. on WA 
and DP. In the latter two cases, fsThr = 0.80 typ-
ically means LDA is much less efficient in fea-
ture reduction than SOT on these two data sets. 

 

DATA SETS 
F-MEASURE (β = 2.0) 

RAW LDA (fsThr) SOT (fsThr) 
RE .7464 .7464 (.50) .7482 (.60) 
NP .4528 .6150 (.75) .6911 (.75) 
PP .3256 .4179 (.60) .6025 (.75) 
TE .2580 .5148(.60) .9405 (.40) 
WA .3125 .4569 (.80) .5519 (.60) 
DP .4787 .6762 (.80) .7155 (.50) 
LR .5413 .5276 (.95) .6583 (.75) 

Table 3. School-of-thought clustering results
 

4 Related Work 

An early work in semantic analysis of scientific 
articles is Griffiths and Steyvers (2004) which 
focused on efficient browsing of large literature 
collections based on scientific topics. Other re-
lated researches include topic-based reviewer 
assignment (Mimno and McCallum, 2007), cita-
tion influence estimation (Dietz et al., 2007), re-
search topic evolution (Hall et al., 2008) and ex-
pert finding (Tu et al., 2010) etc.  

Another line of research is the joint modeling 
of topics and other types of semantic units such 

as perspectives (Lin et al., 2006), sentiment (Mei 
et al., 2007) and opinions (Zhao et al., 2010) etc. 
These works also took a multi-dimensional view 
of document semantics. The TAM model (Paul 
and Girju, 2010) might be the most relevant to 
SOT. TAM simultaneously models aspects and 
topics with different assumptions from SOT and 
it models purely on word level.  

Studies that introduce an explicit background 
distribution include Chemudugunta et al. (2006), 
Haghighi and Vanderwende (2009), and Li et al. 
(2010) etc. Different from these works, SOT as-
sumes that not only some “meaningless” general-
purpose words but also more meaningful words 
about the specific domain backgrounds can be 
learned. What’s more these works all model on a 
word level.  

However, it is very useful to regard sentence 
as the basic processing unit, for example in the 
text scanning approach simulating human read-
ing process by Xu and Zhuge (2013). Indeed, 
sentence-level school of thought assignment is 
crucial to SOT as it allows SOT to model the sci-
entific authoring process. There are also other 
works that model text semantics on different lev-
els other than words or tokens, such as Wallach 
(2006) on n-grams and Titov and McDonald 
(2008) on words within multinomially sampled 
sliding windows. The latter also distinguishes 
between different levels of topics, say global ver-
sus local topics, while in SOT such discrimina-
tion is generality versus originality topics.  

5 Conclusion 

This paper proposes a probabilistic generative 
model SOT for characterizing school-of-thought 
words. In SOT, a school of thought is modeled as 
a distribution of topics, with the latter defined as 
a distribution of topical words. School of thought 
assignment to each sentence is vital as it allows 
SOT to simulate the scientific authoring process 
in which each sentence conveys a piece of idea 
contributed to a certain school of thought as well 
as the domain backgrounds. Narrative and quan-
titative analysis show that high-quality school-of-
thought words can be captured by the proposed 
model. 
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B  Gibbs Sampling of the SOT Model 

Using collapsed Gibbs sampling (Griffiths and 
Steyvers, 2004), the latent variable c


 is infer-

enced in Eq. (B1). In Eq. (B1), , , , ( ,0, , )c b o tN c o t  
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is the number of words of topic t describing the 
common ideas (o = 0) or original ideas (o = 1) of 
school of thought c. The superscript ( , )d s¬  
means that words in sentence s of paper d are not 
counted. ( , )

, ( , )d s
d cN d c¬ ) counts the number of sen-

tences in paper d describing school of thought c 
with sentence s removed from consideration. In 
Eqs. (B1)–(B4), the symbol Σ means summation 
over the corresponding variable. For example,  

, , , , , ,1, ,
( ,0, , ) ( ,0, , )c b o t c b o tt T

N c o N c o t
=

Σ = 
 (B5)

Latent variables b


, o


 and t


 are jointly sam-
pled in Eqs. (B2)–(B4). ( , , )

, ( , )d s n
d bN d b¬ counts the 

number of background (b = 0) or school-of-
thought (b = 1) words in document d without 
counting the n-th token in sentence s. 

( , , )
, (1, )d s n

b vN v¬   is the number of times vocabulary 
item v occurs as background word in the litera-
ture collection without counting the n-th token in 
sentence s of paper d. ( , , )

, , ( ,0, )d s n
d b oN d o¬ is the 

number of words describing either common ideas 
(o = 0) or original ideas (o = 1) of some school 
of thought without considering the n-th token in 
sentence s of paper d. ( , , )

, , , ( ,0, , )d s n
c b o tN c o t¬  is the 

number of words of topic t in the literature col-
lection describing either common ideas (o = 0) or 
original ideas (o = 1) of school of thought c 

without counting the n-th token in sentence s of 
paper d. ( , , )

, , (0, , )d s n
b t vN t v¬  is the number of school-

of-thought words of topic t which is instantiated 
by vocabulary item v in the literature collection 
without counting the n-th token in sentence s of 
paper d. 
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Figure B1. The SOT model inference. 
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