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Abstract

We investigate whether parsers can be
used for self-monitoring in surface real-
ization in order to avoid egregious errors
involving “vicious” ambiguities, namely
those where the intended interpretation
fails to be considerably more likely than
alternative ones. Using parse accuracy
in a simple reranking strategy for self-
monitoring, we find that with a state-
of-the-art averaged perceptron realization
ranking model, BLEU scores cannot be
improved with any of the well-known
Treebank parsers we tested, since these
parsers too often make errors that human
readers would be unlikely to make. How-
ever, by using an SVM ranker to combine
the realizer’s model score together with
features from multiple parsers, including
ones designed to make the ranker more ro-
bust to parsing mistakes, we show that sig-
nificant increases in BLEU scores can be
achieved. Moreover, via a targeted man-
ual analysis, we demonstrate that the SVM
reranker frequently manages to avoid vi-
cious ambiguities, while its ranking errors
tend to affect fluency much more often
than adequacy.

1 Introduction

Rajkumar & White (2011; 2012) have recently
shown that some rather egregious surface realiza-
tion errors—in the sense that the reader would
likely end up with the wrong interpretation—can
be avoided by making use of features inspired by
psycholinguistics research together with an other-
wise state-of-the-art averaged perceptron realiza-
tion ranking model (White and Rajkumar, 2009),
as reviewed in the next section. However, one is
apt to wonder: could one use a parser to check

whether the intended interpretation is easy to re-
cover, either as an alternative or to catch additional
mistakes? Doing so would be tantamount to self-
monitoring in Levelt’s (1989) model of language
production.

Neumann & van Noord (1992) pursued the idea
of self-monitoring for generation in early work
with reversible grammars. As Neumann & van
Noord observed, a simple, brute-force way to gen-
erate unambiguous sentences is to enumerate pos-
sible realizations of an input logical form, then
to parse each realization to see how many inter-
pretations it has, keeping only those that have
a single reading; they then went on to devise a
more efficient method of using self-monitoring to
avoid generating ambiguous sentences, targeted to
the ambiguous portion of the output. We might
question, however, whether it is really possible
to avoid ambiguity entirely in the general case,
since Abney (1996) and others have argued that
nearly every sentence is potentially ambiguous,
though we (as human comprehenders) may not
notice the ambiguities if they are unlikely. Tak-
ing up this issue, Khan et al. (2008)—building on
Chantree et al.’s (2006) approach to identifying
“innocuous” ambiguities—conducted several ex-
periments to test whether ambiguity could be bal-
anced against length or fluency in the context of
generating referring expressions involving coordi-
nate structures. Though Khan et al.’s study was
limited to this one kind of structural ambiguity,
they do observe that generating the brief variants
when the intended interpretation is clear instanti-
ates Van Deemter’s (2004) general strategy of only
avoiding vicious ambiguities—that is, ambigui-
ties where the intended interpretation fails to be
considerably more likely than any other distractor
interpretations—rather than trying to avoid all am-
biguities.

In this paper, we investigate whether Neumann
& van Noord’s brute-force strategy for avoid-
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ing ambiguities in surface realization can be up-
dated to only avoid vicious ambiguities, extend-
ing (and revising) Van Deemter’s general strategy
to all kinds of structural ambiguity, not just the
one investigated by Khan et al. To do so—in a
nutshell—we enumerate an n-best list of realiza-
tions and rerank them if necessary to avoid vicious
ambiguities, as determined by one or more auto-
matic parsers. A potential obstacle, of course, is
that automatic parsers may not be sufficiently rep-
resentative of human readers, insofar as errors that
a parser makes may not be problematic for human
comprehension; moreover, parsers are rarely suc-
cessful in fully recovering the intended interpreta-
tion for sentences of moderate length, even with
carefully edited news text. Consequently, we ex-
amine two reranking strategies, one a simple base-
line approach and the other using an SVM reranker
(Joachims, 2002).

Our simple reranking strategy for self-
monitoring is to rerank the realizer’s n-best list
by parse accuracy, preserving the original order in
case of ties. In this way, if there is a realization in
the n-best list that can be parsed more accurately
than the top-ranked realization—even if the
intended interpretation cannot be recovered with
100% accuracy—it will become the preferred
output of the combined realization-with-self-
monitoring system. With this simple reranking
strategy and each of three different Treebank
parsers, we find that it is possible to improve
BLEU scores on Penn Treebank development data
with White & Rajkumar’s (2011; 2012) baseline
generative model, but not with their averaged
perceptron model. In inspecting the results of
reranking with this strategy, we observe that while
it does sometimes succeed in avoiding egregious
errors involving vicious ambiguities, common
parsing mistakes such as PP-attachment errors
lead to unnecessarily sacrificing conciseness or
fluency in order to avoid ambiguities that would be
easily tolerated by human readers. Therefore, to
develop a more nuanced self-monitoring reranker
that is more robust to such parsing mistakes, we
trained an SVM using dependency precision and
recall features for all three parses, their n-best
parsing results, and per-label precision and recall
for each type of dependency, together with the
realizer’s normalized perceptron model score as
a feature. With the SVM reranker, we obtain a
significant improvement in BLEU scores over

White & Rajkumar’s averaged perceptron model
on both development and test data. Additionally,
in a targeted manual analysis, we find that in cases
where the SVM reranker improves the BLEU
score, improvements to fluency and adequacy are
roughly balanced, while in cases where the BLEU
score goes down, it is mostly fluency that is made
worse (with reranking yielding an acceptable
paraphrase roughly one third of the time in both
cases).

The paper is structured as follows. In Sec-
tion 2, we review the realization ranking mod-
els that serve as a starting point for the paper.
In Section 3, we report on our experiments with
the simple reranking strategy, including a discus-
sion of the ways in which this method typically
fails. In Section 4, we describe how we trained an
SVM reranker and report our results using BLEU
scores (Papineni et al., 2002). In Section 5, we
present a targeted manual analysis of the devel-
opment set sentences with the greatest change in
BLEU scores, discussing both successes and er-
rors. In Section 6, we briefly review related work
on broad coverage surface realization. Finally, in
Section 7, we sum up and discuss opportunities for
future work in this direction.

2 Background

We use the OpenCCG1 surface realizer for the ex-
periments reported in this paper. The OpenCCG
realizer generates surface strings for input seman-
tic dependency graphs (or logical forms) using a
chart-based algorithm (White, 2006) for Combi-
natory Categorial Grammar (Steedman, 2000) to-
gether with a “hypertagger” for probabilistically
assigning lexical categories to lexical predicates
in the input (Espinosa et al., 2008). An exam-
ple input appears in Figure 1. In the figure,
nodes correspond to discourse referents labeled
with lexical predicates, and dependency relations
between nodes encode argument structure (gold
standard CCG lexical categories are also shown);
note that semantically empty function words such
as infinitival-to are missing. The grammar is ex-
tracted from a version of the CCGbank (Hocken-
maier and Steedman, 2007) enhanced for realiza-
tion; the enhancements include: better analyses of
punctuation (White and Rajkumar, 2008); less er-
ror prone handling of named entities (Rajkumar et
al., 2009); re-inserting quotes into the CCGbank;

1http://openccg.sf.net
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Figure 1: Example OpenCCG semantic depen-
dency input for he has a point he wants to make,
with gold standard lexical categories for each node

and assignment of consistent semantic roles across
diathesis alternations (Boxwell and White, 2008),
using PropBank (Palmer et al., 2005).

To select preferred outputs from the chart, we
use White & Rajkumar’s (2009; 2012) realization
ranking model, recently augmented with a large-
scale 5-gram model based on the Gigaword cor-
pus. The ranking model makes choices addressing
all three interrelated sub-tasks traditionally con-
sidered part of the surface realization task in natu-
ral language generation research (Reiter and Dale,
2000; Reiter, 2010): inflecting lemmas with gram-
matical word forms, inserting function words and
linearizing the words in a grammatical and natu-
ral order. The model takes as its starting point two
probabilistic models of syntax that have been de-
veloped for CCG parsing, Hockenmaier & Steed-
man’s (2002) generative model and Clark & Cur-
ran’s (2007) normal-form model. Using the aver-
aged perceptron algorithm (Collins, 2002), White
& Rajkumar (2009) trained a structured predic-
tion ranking model to combine these existing syn-
tactic models with several n-gram language mod-
els. This model improved upon the state-of-the-art
in terms of automatic evaluation scores on held-
out test data, but nevertheless an error analysis re-
vealed a surprising number of word order, func-
tion word and inflection errors. For each kind of
error, subsequent work investigated the utility of
employing more linguistically motivated features
to improve the ranking model.

To improve word ordering decisions, White &
Rajkumar (2012) demonstrated that incorporat-
ing a feature into the ranker inspired by Gib-
son’s (2000) dependency locality theory can de-
liver statistically significant improvements in au-
tomatic evaluation scores, better match the distri-
butional characteristics of sentence orderings, and
significantly reduce the number of serious order-
ing errors (some involving vicious ambiguities) as
confirmed by a targeted human evaluation. Sup-
porting Gibson’s theory, comprehension and cor-
pus studies have found that the tendency to min-
imize dependency length has a strong influence
on constituent ordering choices; see Temperley
(2007) and Gildea and Temperley (2010) for an
overview.

Table 1 shows examples from White and Rajku-
mar (2012) of how the dependency length feature
(DEPLEN) affects the OpenCCG realizer’s output
even in comparison to a model (DEPORD) with
a rich set of discriminative syntactic and depen-
dency ordering features, but no features directly
targeting relative weight. In wsj 0015.7, the de-
pendency length model produces an exact match,
while the DEPORD model fails to shift the short
temporal adverbial next year next to the verb, leav-
ing a confusingly repetitive this year next year at
the end of the sentence. Note how shifting next
year from its canonical VP-final position to appear
next to the verb shortens its dependency length
considerably, while barely lengthening the depen-
dency to based on; at the same time, it avoids
ambiguity in what next year is modifying. In
wsj 0020.1 we see the reverse case: the depen-
dency length model produces a nearly exact match
with just an equally acceptable inversion of closely
watching, keeping the direct object in its canoni-
cal position. By contrast, the DEPORD model mis-
takenly shifts the direct object South Korea, Tai-
wan and Saudia Arabia to the end of the sentence
where it is difficult to understand following two
very long intervening phrases.

With function words, Rajkumar and White
(2011) showed that they could improve upon the
earlier model’s predictions for when to employ
that-complementizers using features inspired by
Jaeger’s (2010) work on using the principle of
uniform information density, which holds that
human language use tends to keep information
density relatively constant in order to optimize
communicative efficiency. In news text, com-
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wsj 0015.7 the exact amount of the refund will be determined next year based on actual collections made
until Dec. 31 of this year .

DEPLEN [same]
DEPORD the exact amount of the refund will be determined based on actual collections made until Dec.

31 of this year next year .

wsj 0020.1 the U.S. , claiming some success in its trade diplomacy , removed South Korea , Taiwan and
Saudi Arabia from a list of countries it is closely watching for allegedly failing to honor U.S.
patents , copyrights and other intellectual-property rights .

DEPLEN the U.S. claiming some success in its trade diplomacy , removed South Korea , Taiwan and
Saudi Arabia from a list of countries it is watching closely for allegedly failing to honor U.S.
patents , copyrights and other intellectual-property rights .

DEPORD the U.S. removed from a list of countries it is watching closely for allegedly failing to honor U.S.
patents , copyrights and other intellectual-property rights , claiming some success in its trade
diplomacy , South Korea , Taiwan and Saudi Arabia .

Table 1: Examples of realized output for full models with and without the dependency length feature
(White and Rajkumar, 2012)

plementizers are left out two times out of three,
but in some cases the presence of that is cru-
cial to the interpretation. Generally, inserting a
complementizer makes the onset of a complement
clause more predictable, and thus less informa-
tion dense, thereby avoiding a potential spike in
information density that is associated with com-
prehension difficulty. Rajkumar & White’s exper-
iments confirmed the efficacy of the features based
on Jaeger’s work, including information density–
based features, in a local classification model.2

Their experiments also showed that the improve-
ments in prediction accuracy apply to cases in
which the presence of a that-complementizer ar-
guably makes a substantial difference to fluency
or intelligiblity. For example, in (1), the pres-
ence of that avoids a local ambiguity, helping the
reader to understand that for the second month in
a row modifies the reporting of the shortage; with-
out that, it is very easy to mis-parse the sentence
as having for the second month in a row modifying
the saying event.

(1) He said that/∅? for the second month in a row,
food processors reported a shortage of nonfat
dry milk. (PTB WSJ0036.61)

Finally, to reduce the number of subject-verb
agreement errors, Rajkumar and White (2010) ex-
tended the earlier model with features enabling it
to make correct verb form choices in sentences
involving complex coordinate constructions and

2Note that the features from the local classification model
for that-complementizer choice have not yet been incorpo-
rated into OpenCCG’s global realization ranking model, and
thus do not inform the baseline realization choices in this
work.

with expressions such as a lot of where the correct
choice is not determined solely by the head noun.
They also improved animacy agreement with rela-
tivizers, reducing the number of errors where that
or which was chosen to modify an animate noun
rather than who or whom (and vice-versa), while
also allowing both choices where corpus evidence
was mixed.

3 Simple Reranking

3.1 Methods

We ran two OpenCCG surface realization models
on the CCGbank dev set (derived from Section 00
of the Penn Treebank) and obtained n-best (n =
10) realizations. The first one is the baseline gen-
erative model (hereafter, generative model) used
in training the averaged perceptron model. This
model ranks realizations using the product of the
Hockenmaier syntax model, n-gram models over
words, POS tags and supertags in the training sec-
tions of the CCGbank, and the large-scale 5-gram
model from Gigaword. The second one is the
averaged perceptron model (hereafter, perceptron
model), which uses all the features reviewed in
Section 2. In order to experiment with multiple
parsers, we used the Stanford dependencies (de
Marneffe et al., 2006), obtaining gold dependen-
cies from the gold-standard PTB parses and auto-
matic dependencies from the automatic parses of
each realization. Using dependencies allowed us
to measure parse accuracy independently of word
order. We chose the Berkeley parser (Petrov et
al., 2006), Brown parser (Charniak and Johnson,
2005) and Stanford parser (Klein and Manning,
2003) to parse the realizations generated by the
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Berkeley Brown Stanford
No reranking 87.93 87.93 87.93

Labeled 87.77 87.87 87.12
Unlabeled 87.90 87.97 86.97

Table 2: Devset BLEU scores for simple ranking
on top of n-best perceptron model realizations
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Figure 1: Example parsing mistake in PP-
attachment (wsj 0043.1)

Abstract

We investigate . . .

Figure 2: Example parsing mistake in PP-
attachment (wsj 0043.1)

two realization models and calculated precision,
recall and F1 of the dependencies for each realiza-
tion by comparing them with the gold dependen-
cies. We then ranked the realizations by their F1

score of parse accuracy, keeping the original rank-
ing in case of ties. We also tried using unlabeled
(and unordered) dependencies, in order to possi-
bly make better use of parses that were close to
being correct. In this setting, as long as the right
pair of tokens occur in a dependency relation, it
was counted as a correctly recovered dependency.

3.2 Results

Simple ranking with the Berkeley parser of the
generative model’s n-best realizations raised the
BLEU score from 85.55 to 86.07, well below
the averaged perceptron model’s BLEU score of
87.93. However, as shown in Table 2, none of the
parsers yielded significant improvements on the
top of the perceptron model.

Inspecting the results of simple ranking re-
vealed that while simple ranking did success-
fully avoid vicious ambiguities in some cases,
parser mistakes with PP-attachments, noun-noun
compounds and coordinate structures too often

blocked the gold realization from emerging on top.
To illustrate, Figure 2 shows an example with a
PP-attachment mistake. In the figure, the key gold
dependencies of the reference sentence are shown
in (a), the dependencies of the realization selected
by the simple ranker are shown in (b), and the de-
pendencies of the realization selected by the per-
ceptron ranker (same as gold) appear in (c), with
the parsing mistake indicated by the dashed line.
The simple ranker ends up choosing (b) as the best
realization because it has the most accurate parse
compared to the reference sentence, given the mis-
take with (c).

Other common parse errors are illustrated in
Figure 3. Here, (b) ends up getting chosen by the
simple ranker as the realization with the most ac-
curate parse given the failures in (c), where the ad-
ditional technology, personnel training is mistak-
enly analyzed as one noun phrase, a reading un-
likely to be considered by human readers.

In sum, although simple ranking helps to avoid
vicious ambiguity in some cases, the overall re-
sults of simple ranking are no better than the per-
ceptron model (according to BLEU, at least), as
parse failures that are not reflective of human in-
tepretive tendencies too often lead the ranker to
choose dispreferred realizations. As such, we turn
now to a more nuanced model for combining the
results of multiple parsers in a way that is less sen-
sitive to such parsing mistakes, while also letting
the perceptron model have a say in the final rank-
ing.

4 Reranking with SVMs

4.1 Methods

Since different parsers make different errors, we
conjectured that dependencies in the intersection
of the output of multiple parsers may be more re-
liable and thus may more reliably reflect human
comprehension preferences. Similarly, we conjec-
tured that large differences in the realizer’s percep-
tron model score may more reliably reflect human
fluency preferences than small ones, and thus we
combined this score with features for parser accu-
racy in an SVM ranker. Additionally, given that
parsers may more reliably recover some kinds of
dependencies than others, we included features for
each dependency type, so that the SVM ranker
might learn how to weight them appropriately.
Finally, since the differences among the n-best
parses reflect the least certain parsing decisions,
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Figure 2: Example parsing mistakes in a noun-noun compound and a coordinate structure (wsj 0085.45)Figure 3: Example parsing mistakes in a noun-noun compound and a coordinate structure (wsj 0085.45)

and thus ones that may require more common
sense inference that is easy for humans but not
machines, we conjectured that including features
from the n-best parses may help to better match
human performance. In more detail, we made use
of the following feature classes for each candidate
realization:

perceptron model score the score from the real-
izer’s model, normalized to [0,1] for the real-
izations in the n-best list

precision and recall labeled and unlabeled preci-
sion and recall for each parser’s best parse

per-label precision and recall (dep) precision
and recall for each type of dependency
obtained from each parser’s best parse (using
zero if not defined for lack of predicted or
gold dependencies with a given label)

n-best precision and recall (nbest) labeled and
unlabeled precision and recall for each
parser’s top five parses, along with the same
features for the most accurate of these parses

In training, we used the BLEU scores of each
realization compared with its reference sentence
to establish a preference order over pairs of candi-
date realizations, assuming that the original corpus
sentences are generally better than related alterna-
tives, and that BLEU can somewhat reliably pre-
dict human preference judgments.

We trained the SVM ranker (Joachims, 2002)
with a linear kernel and chose the hyper-parameter
c, which tunes the trade-off between training error
and margin, with 6-fold cross-validation on the de-
vset. We trained different models to investigate the
contribution made by different parsers and differ-
ent types of features, with the perceptron model
score included as a feature in all models. For each
parser, we trained a model with its overall preci-
sion and recall features, as shown at the top of Ta-
ble 3. Then we combined these three models to get
a new model (Bkl+Brw+St in the table) . Next,
to this combined model we separately added (i)
the per-label precision and recall features from all
the parsers (BBS+dep), and (ii) the n-best features
from the parsers (BBS+nbest). The full model
(BBS+dep+nbest) includes all the features listed
above. Finally, since the Berkeley parser yielded
the best results on its own, we also tested mod-
els using all the feature classes but only using this
parser by itself.

4.2 Results

Table 3 shows the results of different SVM rank-
ing models on the devset. We calculated signifi-
cance using paired bootstrap resampling (Koehn,
2004).3 Both the per-label precision & recall fea-

3Kudos to Kevin Gimpel for making his implementa-
tion available: http://www.ark.cs.cmu.edu/MT/
paired_bootstrap_v13a.tar.gz
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BLEU sig.
perceptron baseline 87.93 –
Berkeley 88.45 *
Brown 88.34
Stanford 88.18
Bkl+Brw+St 88.44 *
BBS+dep 88.63 **
BBS+nbest 88.60 **
BBS+dep+nbest 88.73 **
Bkl+dep 88.63 **
Bkl+nbest 88.48 *
Bkl +dep+nbest 88.68 **

Table 3: Devset results of SVM ranking on top
of perceptron model. Significance codes: ∗∗ for
p < 0.05, ∗ for p < 0.1.

BLEU sig.
perceptron baseline 86.94 –
BBS+dep+nbest 87.64 **

Table 4: Final test results of SVM ranking on top
of perceptron model. Significance codes: ∗∗ for
p < 0.05, ∗ for p < 0.1.

tures and the n-best parse features contributed to
achieving a significant improvement compared to
the perceptron model. Somewhat surprisingly, the
Berkeley parser did as well as all three parsers us-
ing just the overall precision and recall features,
but not quite as well using all features. The com-
plete model, BBS+dep+nbest, achieved a BLEU
score of 88.73, significantly improving upon the
perceptron model (p < 0.02). We then confirmed
this result on the final test set, Section 23 of the
CCGbank, as shown in Table 4 (p < 0.02 as well).

5 Analysis and Discussion

5.1 Targeted Manual Analysis

In order to gain a better understanding of the suc-
cesses and failures of our SVM ranker, we present
here a targeted manual analysis of the develop-
ment set sentences with the greatest change in
BLEU scores, carried out by the second author
(a native speaker). In this analysis, we consider
whether the reranked realization improves upon
or detracts from realization quality—in terms of
adequacy, fluency, both or neither—along with
a linguistic categorization of the differences be-
tween the reranked realization and the original

top-ranked realization according to the averaged
perceptron model. Unlike the broad-based and ob-
jective evaluation in terms of BLEU scores pre-
sented above, this analysis is narrowly targeted
and subjective, though the interested reader is in-
vited to review the complete set of analyzed ex-
amples that accompany the paper as a supplement.
We leave a more broad-based human evaluation by
naive subjects for future work.

Table 5 shows the results of the analysis, both
overall and for the most frequent categories of
changes. Of the 50 sentences where the BLEU
score went up the most, 15 showed an improve-
ment in adequacy (i.e., in conveying the intended
meaning), 22 showed an improvement in fluency
(with 3 cases also improving adequacy), and 16
yielded no discernible change in fluency or ade-
quacy. By contrast, with the 50 sentences where
the BLEU score went down the most, adequacy
was only affected 4 times, though fluency was af-
fected 32 times, and 15 remained essentially un-
changed.4 The table also shows that differences
in the order of VP constituents usually led to a
change in adequacy or fluency, as did ordering
changes within NPs, with noun-noun compounds
and named entities as the most frequent subcate-
gories of NP-ordering changes. Of the cases where
adequacy and fluency were not affected, contrac-
tions and subject-verb inversions were the most
frequent differences.

Examples of the changes yielded by the SVM
ranker appear in Table 6. With wsj 0036.54,
the averaged perceptron model selects a realiza-
tion that regrettably (though amusingly) swaps
purchasing and more than 250—yielding a sen-
tence that suggests that the executives have been
purchased!—while the SVM ranker succeeds in
ranking the original sentence above all competing
realizations. With wsj 0088.25, self-monitoring
with the SVM ranker yields a realization nearly
identical to the original except for an extra comma,
where it is clear that in public modifies do this;
by contrast, in the perceptron-best realization, in
public mistakenly appears to modify be disclosed.
With wsj 0041.18, the SVM ranker unfortunately
prefers a realization where presumably seems to
modify shows rather than of two politicians as

4The difference in the distribution of adequacy change,
fluency change and no change counts between the two condi-
tions is highly significant statistically (χ2 = 9.3, df = 2, p <
0.01). In this comparison, items where both fluency and ade-
quacy were affected were counted as adequacy cases.
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±adq ±flu =eq ±vpord ±npord ±nn ±ne =vpord =sbjinv =cntrc
BLEU wins 15 22 16 10 9 7 3 4 - 11
BLEU losses 4 32 15 8 13 5 5 4 7 -

Table 5: Manual analysis of devset sentences where the SVM ranker achieved the greatest in-
crease/decrease in BLEU scores (50 each of wins/losses) compared to the averaged perceptron baseline
model in terms of positive or negative changes in adequacy (±adq), fluency (±flu) or neither (=eq);
changes in VP ordering (±vpord), NP ordering (±npord), noun-noun compound ordering (±nn) and
named entities (±ne); and neither positive nor negative changes in VP ordering (=vpord), subject-
inversion (=sbjinv) and contractions (=cntrc). In all but one case (counted as =eq here), the BLEU
wins saw positive changes and the BLEU losses saw negative changes.

wsj 0036.54 the purchasing managers ’ report is based on data provided by more than 250 purchasing executives .
SVM RANKER [same]
PERCEP BEST the purchasing managers ’ report is based on data provided by purchasing more than 250 executives .

wsj 0088.25 Markey said we could have done this in public because so little sensitive information was disclosed ,
the aide said .

SVM RANKER Markey said , we could have done this in public because so little sensitive information was disclosed ,
the aide said .

PERCEP BEST Markey said , we could have done this because so little sensitive information was disclosed in public ,
the aide said .

wsj 0041.18 the screen shows two distorted , unrecognizable photos , presumably of two politicians .
SVM RANKER the screen shows two distorted , unrecognizable photos presumably , of two politicians .
PERCEP BEST [same as original]

wsj 0044.111 “ I was dumbfounded ” , Mrs. Ward recalls .
SVM RANKER “ I was dumbfounded ” , recalls Mrs. Ward .
PERCEP BEST [same as original]

Table 6: Examples of devset sentences where the SVM ranker improved adequacy (top), made it worse
(middle) or left it the same (bottom)

in the original, which the averaged perceptron
model prefers. Finally, wsj 0044.111 is an exam-
ple where a subject-inversion makes no difference
to adequacy or fluency.

5.2 Discussion
The BLEU evaluation and targeted manual analy-
sis together show that the SVM ranker increases
the similarity to the original corpus of realizations
produced with self-monitoring, often in ways that
are crucial for the intended meaning to be apparent
to human readers.

A limitation of the experiments reported in this
paper is that OpenCCG’s input semantic depen-
dency graphs are not the same as the Stanford de-
pendencies used with the Treebank parsers, and
thus we have had to rely on the gold parses in
the PTB to derive gold dependencies for measur-
ing accuracy of parser dependency recovery. In a
realistic application scenario, however, we would
need to measure parser accuracy relative to the re-
alizer’s input. We initially tried using OpenCCG’s

parser in a simple ranking approach, but found that
it did not improve upon the averaged perceptron
model, like the three parsers used subsequently.
Given that with the more refined SVM ranker, the
Berkeley parser worked nearly as well as all three
parsers together using the complete feature set,
the prospects for future work on a more realistic
scenario using the OpenCCG parser in an SVM
ranker for self-monitoring now appear much more
promising, either using OpenCCG’s reimplemen-
tation of Hockenmaier & Steedman’s generative
CCG model, or using the Berkeley parser trained
on OpenCCG’s enhanced version of the CCG-
bank, along the lines of Fowler and Penn (2010).

6 Related Work

Approaches to surface realization have been de-
veloped for LFG, HPSG, and TAG, in addition
to CCG, and recently statistical dependency-based
approaches have been developed as well; see the
report from the first surface realization shared
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task (Belz et al., 2010; Belz et al., 2011) for an
overview. To our knowledge, however, a com-
prehensive investigation of avoiding vicious struc-
tural ambiguities with broad coverage statistical
parsers has not been previously explored. As
our SVM ranking model does not make use of
CCG-specific features, we would expect our self-
monitoring method to be equally applicable to re-
alizers using other frameworks.

7 Conclusion

In this paper, we have shown that while using
parse accuracy in a simple reranking strategy for
self-monitoring fails to improve BLEU scores
over a state-of-the-art averaged perceptron realiza-
tion ranking model, it is possible to significantly
increase BLEU scores using an SVM ranker that
combines the realizer’s model score together with
features from multiple parsers, including ones de-
signed to make the ranker more robust to parsing
mistakes that human readers would be unlikely to
make. Additionally, via a targeted manual analy-
sis, we showed that the SVM reranker frequently
manages to avoid egregious errors involving “vi-
cious” ambiguities, of the kind that would mislead
human readers as to the intended meaning.

As noted in Reiter’s (2010) survey, many NLG
systems use surface realizers as off-the-shelf com-
ponents. In this paper, we have focused on
broad coverage surface realization using widely-
available PTB data—where there are many sen-
tences of varying complexity with gold-standard
annotations—following the common assumption
that experiments with broad coverage realization
are (or eventually will be) relevant for NLG ap-
plications. Of course, the kinds of ambiguity that
can be problematic in news text may or may not be
the same as the ones encountered in particular ap-
plications. Moreover, for certain applications (e.g.
ones with medical or legal implications), it may be
better to err on the side of ambiguity avoidance,
even at some expense to fluency, thereby requir-
ing training data reflecting the desired trade-off to
adapt the methods described here. We leave these
application-centered issues for investigation in fu-
ture work.

The current approach is primarily suitable for
offline use, for example in report generation where
there are no real-time interaction demands. In fu-
ture work, we also plan to investigate ways that
self-monitoring might be implemented more effi-

ciently as a combined process, rather than running
independent parsers as a post-process following
realization.
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