
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 1448–1458,
Baltimore, Maryland, USA, June 23-25 2014. c©2014 Association for Computational Linguistics

Semantic Frame Identification with Distributed Word Representations

Karl Moritz Hermann‡∗ Dipanjan Das† Jason Weston† Kuzman Ganchev†
‡Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom

† Google Inc., 76 9th Avenue, New York, NY 10011, United States
karl.moritz.hermann@cs.ox.ac.uk

{dipanjand,kuzman}@google.com jaseweston@gmail.com

Abstract

We present a novel technique for semantic
frame identification using distributed rep-
resentations of predicates and their syntac-
tic context; this technique leverages auto-
matic syntactic parses and a generic set
of word embeddings. Given labeled data
annotated with frame-semantic parses, we
learn a model that projects the set of word
representations for the syntactic context
around a predicate to a low dimensional
representation. The latter is used for se-
mantic frame identification; with a stan-
dard argument identification method in-
spired by prior work, we achieve state-of-
the-art results on FrameNet-style frame-
semantic analysis. Additionally, we report
strong results on PropBank-style semantic
role labeling in comparison to prior work.

1 Introduction

Distributed representations of words have proved
useful for a number of tasks. By providing richer
representations of meaning than what can be en-
compassed in a discrete representation, such ap-
proaches have successfully been applied to tasks
such as sentiment analysis (Socher et al., 2011),
topic classification (Klementiev et al., 2012) or
word-word similarity (Mitchell and Lapata, 2008).

We present a new technique for semantic frame
identification that leverages distributed word rep-
resentations. According to the theory of frame se-
mantics (Fillmore, 1982), a semantic frame rep-
resents an event or scenario, and possesses frame
elements (or semantic roles) that participate in the

∗The majority of this research was carried out during an
internship at Google.

event. Most work on frame-semantic parsing has
usually divided the task into two major subtasks:
frame identification, namely the disambiguation of
a given predicate to a frame, and argument iden-
tification (or semantic role labeling), the analysis
of words and phrases in the sentential context that
satisfy the frame’s semantic roles (Das et al., 2010;
Das et al., 2014).1 Here, we focus on the first sub-
task of frame identification for given predicates;
we use our novel method (§3) in conjunction with
a standard argument identification model (§4) to
perform full frame-semantic parsing.

We present experiments on two tasks. First, we
show that for frame identification on the FrameNet
corpus (Baker et al., 1998; Fillmore et al., 2003),
we outperform the prior state of the art (Das et al.,
2014). Moreover, for full frame-semantic parsing,
with the presented frame identification technique
followed by our argument identification method,
we report the best results on this task to date. Sec-
ond, we present results on PropBank-style seman-
tic role labeling (Palmer et al., 2005; Meyers et al.,
2004; Màrquez et al., 2008), that approach strong
baselines, and are on par with prior state of the art
(Punyakanok et al., 2008).

2 Overview

Early work in frame-semantic analysis was pio-
neered by Gildea and Jurafsky (2002). Subsequent
work in this area focused on either the FrameNet
or PropBank frameworks, and research on the lat-
ter has been more popular. Since the CoNLL
2004-2005 shared tasks (Carreras and Màrquez,

1There are exceptions, wherein the task has been modeled
using a pipeline of three classifiers that perform frame iden-
tification, a binary stage that classifies candidate arguments,
and argument identification on the filtered candidates (Baker
et al., 2007; Johansson and Nugues, 2007).

1448

John bought a car .

COMMERCE_BUY
buy.V

Buyer Goods

John bought a car .

buy.01
buy.V

A0 A1

Mary sold a car .

COMMERCE_BUY
sell.V

Seller Goods

Mary sold a car .

sell.01
sell.V

A0 A1

(a) (b)

Figure 1: Example sentences with frame-semantic analyses.
FrameNet annotation conventions are used in (a) while (b)
denotes PropBank conventions.

2004; Carreras and Màrquez, 2005) on PropBank
semantic role labeling (SRL), it has been treated
as an important NLP problem. However, research
has mostly focused on argument analysis, skipping
the frame disambiguation step, and its interaction
with argument identification.

2.1 Frame-Semantic Parsing
Closely related to SRL, frame-semantic parsing
consists of the resolution of predicate sense into
a frame, and the analysis of the frame’s argu-
ments. Work in this area exclusively uses the
FrameNet full text annotations. Johansson and
Nugues (2007) presented the best performing sys-
tem at SemEval 2007 (Baker et al., 2007), and Das
et al. (2010) improved performance, and later set
the current state of the art on this task (Das et al.,
2014). We briefly discuss FrameNet, and subse-
quently PropBank annotation conventions here.

FrameNet The FrameNet project (Baker et al.,
1998) is a lexical database that contains informa-
tion about words and phrases (represented as lem-
mas conjoined with a coarse part-of-speech tag)
termed as lexical units, with a set of semantic
frames that they could evoke. For each frame,
there is a list of associated frame elements (or
roles, henceforth), that are also distinguished as
core or non-core.2 Sentences are annotated us-
ing this universal frame inventory. For exam-
ple, consider the pair of sentences in Figure 1(a).
COMMERCE BUY is a frame that can be evoked by
morphological variants of the two example lexical
units buy.V and sell.V. Buyer, Seller and Goods are
some example roles for this frame.

2Additional information such as finer distinction of the
coreness properties of roles, the relationship between frames,
and that of roles are also present, but we do not leverage that
information in this work.

PropBank The PropBank project (Palmer et al.,
2005) is another popular resource related to se-
mantic role labeling. The PropBank corpus has
verbs annotated with sense frames and their ar-
guments. Like FrameNet, it also has a lexi-
cal database that stores type information about
verbs, in the form of sense frames and the possi-
ble semantic roles each frame could take. There
are modifier roles that are shared across verb
frames, somewhat similar to the non-core roles
in FrameNet. Figure 1(b) shows annotations for
two verbs “bought” and “sold”, with their lemmas
(akin to the lexical units in FrameNet) and their
verb frames buy.01 and sell.01. Generic core role
labels (of which there are seven, namely A0-A5 and
AA) for the verb frames are marked in the figure.3

A key difference between the two annotation sys-
tems is that PropBank uses a local frame inven-
tory, where frames are predicate-specific. More-
over, role labels, although few in number, take spe-
cific meaning for each verb frame. Figure 1 high-
lights this difference: while both sell.V and buy.V
are members of the same frame in FrameNet, they
evoke different frames in PropBank. In spite of
this difference, nearly identical statistical models
could be employed for both frameworks.

Modeling In this paper, we model the frame-
semantic parsing problem in two stages: frame
identification and argument identification. As
mentioned in §1, these correspond to a frame dis-
ambiguation stage,4 and a stage that finds the var-
ious arguments that fulfill the frame’s semantic
roles within the sentence, respectively. This re-
sembles the framework of Das et al. (2014), who
solely focus on FrameNet corpora, unlike this pa-
per. The novelty of this paper lies in the frame
identification stage (§3). Note that this two-stage
approach is unusual for the PropBank corpora
when compared to prior work, where the vast ma-
jority of published papers have not focused on the
verb frame disambiguation problem at all, only fo-
cusing on the role labeling stage (see the overview
paper of Màrquez et al. (2008) for example).

3NomBank (Meyers et al., 2004) is a similar resource for
nominal predicates, but we do not consider it in our experi-
ments.

4For example in PropBank, the lexical unit buy.V has
three verb frames and in sentential context, we want to disam-
biguate its frame. (Although PropBank never formally uses
the term lexical unit, we adopt its usage from the frame se-
mantics literature.)

1449

2.2 Distributed Frame Identification

We present a model that takes word embeddings
as input and learns to identify semantic frames.
A word embedding is a distributed representa-
tion of meaning where each word is represented
as a vector in Rn. Such representations allow a
model to share meaning between similar words,
and have been used to capture semantic, syntac-
tic and morphological content (Collobert and We-
ston, 2008; Turian et al., 2010, inter alia). We use
word embeddings to represent the syntactic con-
text of a particular predicate instance as a vector.
For example, consider the sentence “He runs the
company.” The predicate runs has two syntac-
tic dependents – a subject and direct object (but
no prepositional phrases or clausal complements).
We could represent the syntactic context of runs as
a vector with blocks for all the possible dependents
warranted by a syntactic parser; for example, we
could assume that positions 0 . . . n in the vector
correspond to the subject dependent, n+1 . . . 2n
correspond to the clausal complement dependent,
and so forth. Thus, the context is a vector in Rnk

with the embedding of He at the subject position,
the embedding of company in direct object posi-
tion and zeros everywhere else. Given input vec-
tors of this form for our training data, we learn a
matrix that maps this high dimensional and sparse
representation into a lower dimensional space. Si-
multaneously, the model learns an embedding for
all the possible labels (i.e. the frames in a given
lexicon). At inference time, the predicate-context
is mapped to the low dimensional space, and we
choose the nearest frame label as our classifica-
tion. We next describe this model in detail.

3 Frame Identification with Embeddings

We continue using the example sentence from
§2.2: “He runs the company.” where we want to
disambiguate the frame of runs in context. First,
we extract the words in the syntactic context of
runs; next, we concatenate their word embeddings
as described in §2.2 to create an initial vector space
representation. Subsequently, we learn a map-
ping from this initial representation into a low-
dimensional space; we also learn an embedding
for each possible frame label in the same low-
dimensional space. The goal of learning is to
make sure that the correct frame label is as close as
possible to the mapped context, while competing
frame labels are farther away.

Formally, let x represent the actual sentence
with a marked predicate, along with the associated
syntactic parse tree; let our initial representation
of the predicate context be g(x). Suppose that the
word embeddings we start with are of dimension
n. Then g is a function from a parsed sentence
x to Rnk, where k is the number of possible syn-
tactic context types. For example g selects some
important positions relative to the predicate, and
reserves a block in its output space for the embed-
ding of words found at that position. Suppose g
considers clausal complements and direct objects.
Then g : X → R2n and for the example sentence
it has zeros in positions 0 . . . n and the embedding
of the word company in positions n+1 . . . 2n.

g(x) = [0, . . . , 0, embedding of company].

Section 3.1 describes the context positions we use
in our experiments. Let the low dimensional space
we map to be Rm and the learned mapping be M :
Rnk → Rm. The mapping M is a linear trans-
formation, and we learn it using the WSABIE algo-
rithm (Weston et al., 2011). WSABIE also learns an
embedding for each frame label (y, henceforth).
In our setting, this means that each frame corre-
sponds to a point in Rm. If we have F possi-
ble frames we can store those parameters in an
F ×m matrix, one m-dimensional point for each
frame, which we will refer to as the linear map-
ping Y . Let the lexical unit (the lemma conjoined
with a coarse POS tag) for the marked predicate
be `. We denote the frames that associate with
` in the frame lexicon5 and our training corpus
as F`. WSABIE performs gradient-based updates
on an objective that tries to minimize the distance
between M(g(x)) and the embedding of the cor-
rect label Y (y), while maintaining a large distance
between M(g(x)) and the other possible labels
Y (ȳ) in the confusion set F`. At disambiguation
time, we use a simple dot product similarity as our
distance metric, meaning that the model chooses
a label by computing the argmaxys(x, y) where
s(x, y) = M(g(x)) ·Y (y), where the argmax iter-
ates over the possible frames y ∈ F` if ` was seen
in the lexicon or the training data, or y ∈ F , if it
was unseen.6 Model learning is performed using
the margin ranking loss function as described in

5The frame lexicon stores the frames, corresponding se-
mantic roles and the lexical units associated with the frame.

6This disambiguation scheme is similar to the one adopted
by Das et al. (2014), but they use unlemmatized words to
define their confusion set.

1450

Figure 2: Context representation extraction for the
embedding model. Given a dependency parse (1)
the model extracts all words matching a set of paths
from the frame evoking predicate and its direct de-
pendents (2). The model computes a composed rep-
resentation of the predicate instance by using dis-
tributed vector representations for words (3) – the
(red) vertical embedding vectors for each word are
concatenated into a long vector. Finally, we learn a
linear transformation function parametrized by the
context blocks (4).

Weston et al. (2011), and in more detail in section
3.2.

Since WSABIE learns a single mapping from g(x)
to Rm, parameters are shared between different
words and different frames. So for example “He
runs the company” could help the model disam-
biguate “He owns the company.” Moreover, since
g(x) relies on word embeddings rather than word
identities, information is shared between words.
For example “He runs the company” could help
us to learn about “She runs a corporation”.

3.1 Context Representation Extraction

In principle g(x) could be any feature function, but
we performed an initial investigation of two partic-
ular variants. In both variants, our representation
is a block vector where each block corresponds to
a syntactic position relative to the predicate, and
each block’s values correspond to the embedding
of the word at that position.
Direct Dependents The first context function we
considered corresponds to the examples in §3. To
elaborate, the positions of interest are the labels of
the direct dependents of the predicate, so k is the
number of labels that the dependency parser can
produce. For example, if the label on the edge be-
tween runs and He is nsubj, we would put the em-
bedding of He in the block corresponding to nsubj.
If a label occurs multiple times, then the embed-
dings of the words below this label are averaged.

Unfortunately, using only the direct dependents
can miss a lot of useful information. For exam-
ple, topicalization can place discriminating infor-
mation farther from the predicate. Consider “He
runs the company.” vs. “It was the company that
he runs.” In the second sentence, the discrim-
inating word, company dominates the predicate
runs. Similarly, predicates in embedded clauses
may have a distant agent which cannot be captured
using direct dependents. Consider “The athlete
ran the marathon.” vs. “The athlete prepared him-
self for three months to run the marathon.” In the

second example, for the predicate run, the agent
The athlete is not a direct dependent, but is con-
nected via a longer dependency path.
Dependency Paths To capture more relevant
context, we developed a second context function
as follows. We scanned the training data for a
given task (either the PropBank or the FrameNet
domains) for the dependency paths that connected
the gold predicates to the gold semantic argu-
ments. This set of dependency paths were deemed
as possible positions in the initial vector space rep-
resentation. In addition, akin to the first context
function, we also added all dependency labels to
the context set. Thus for this context function, the
block cardinality k was the sum of the number of
scanned gold dependency path types and the num-
ber of dependency labels. Given a predicate in its
sentential context, we therefore extract only those
context words that appear in positions warranted
by the above set. See Figure 2 for an illustration
of this process.

We performed initial experiments using con-
text extracted from 1) direct dependents, 2) de-
pendency paths, and 3) both. For all our experi-
ments, setting 3) which concatenates the direct de-
pendents and dependency path always dominated
the other two, so we only report results for this
setting.

3.2 Learning
We model our objective function following We-
ston et al. (2011), using a weighted approximate-
rank pairwise loss, learned with stochastic gradi-
ent descent. The mapping from g(x) to the low
dimensional space Rm is a linear transformation,
so the model parameters to be learnt are the matrix
M ∈ Rnk×m as well as the embedding of each
possible frame label, represented as another ma-
trix Y ∈ RF×m where there are F frames in total.
The training objective function minimizes:∑
x

∑
ȳ

L
(
ranky(x)

)
max(0, γ+s(x, y)−s(x, ȳ)).

1451

where x, y are the training inputs and their cor-
responding correct frames, and ȳ are negative
frames, γ is the margin. Here, ranky(x) is the
rank of the positive frame y relative to all the neg-
ative frames:

ranky(x) =
∑
ȳ

I(s(x, y) ≤ γ + s(x, ȳ)),

and L(η) converts the rank to a weight. Choos-
ing L(η) = Cη for any positive constant C opti-
mizes the mean rank, whereas a weighting such as
L(η) =

∑η
i=1 1/i (adopted here) optimizes the

top of the ranked list, as described in (Usunier
et al., 2009). To train with such an objective,
stochastic gradient is employed. For speed the
computation of ranky(x) is then replaced with a
sampled approximation: sample N items ȳ until
a violation is found, i.e. max(0, γ + s(x, ȳ) −
s(x, y))) > 0 and then approximate the rank with
(F − 1)/N , see Weston et al. (2011) for more
details on this procedure. For the choices of the
stochastic gradient learning rate, margin (γ) and
dimensionality (m), please refer to §5.4-§5.5.

Note that an alternative approach could learn
only the matrixM , and then use a k-nearest neigh-
bor classifier in Rm, as in Weinberger and Saul
(2009). The advantage of learning an embedding
for the frame labels is that at inference time we
need to consider only the set of labels for classi-
fication rather than all training examples. Addi-
tionally, since we use a frame lexicon that gives
us the possible frames for a given predicate, we
usually only consider a handful of candidate la-
bels. If we used all training examples for a given
predicate for finding a nearest-neighbor match at
inference time, we would have to consider many
more candidates, making the process very slow.

4 Argument Identification

Here, we briefly describe the argument identifi-
cation model used in our frame-semantic parsing
experiments, post frame identification. Given x,
the sentence with a marked predicate, the argu-
ment identification model assumes that the pred-
icate frame y has been disambiguated. From a
frame lexicon, we look up the set of semantic roles
Ry that associate with y. This set also contains the
null role r∅. From x, a rule-based candidate argu-
ment extraction algorithm extracts a set of spans
A that could potentially serve as the overt7 argu-

7By overtness, we mean the non-null instantiation of a
semantic role in a frame-semantic parse.

• starting word of a • POS of the starting word of a
• ending word of a • POS of the ending word of a
• head word of a • POS of the head word of a
• bag of words in a • bag of POS tags in a
• a bias feature • voice of the predicate use
• word cluster of a’s head
• word cluster of a’s head conjoined with word cluster
of the predicate∗

• dependency path between a’s head and the predicate
• the set of dependency labels of the predicate’s children
• dependency path conjoined with the POS tag of a’s
head
• dependency path conjoined with the word cluster of
a’s head
• position of a with respect to the predicate (before, after,
overlap or identical)
• whether the subject of the predicate is missing (miss-
ingsubj)
• missingsubj, conjoined with the dependency path
• missingsubj, conjoined with the dependency path from
the verb dominating the predicate to a’s head

Table 1: Argument identification features. The span in con-
sideration is termed a. Every feature in this list has two ver-
sions, one conjoined with the given role r and the other con-
joined with both r and the frame y. The feature with a ∗ su-
perscript is only conjoined with the role to reduce its sparsity.

mentsAy for y (see §5.4-§5.5 for the details of the
candidate argument extraction algorithms).
Learning Given training data of the form
〈〈x(i), y(i),M(i)〉〉Ni=1, where,

M = {(r, a} : r ∈ Ry, a ∈ A ∪Ay}, (1)

a set of tuples that associates each role r in Ry
with a span a according to the gold data. Note that
this mapping associates spans with the null role r∅
as well. We optimize the following log-likelihood
to train our model:

max
θ

N∑
i=1

|M(i)|∑
j=1

log pθ
(
(r, a)j |x, y,Ry

)− C‖θ‖22
where pθ is a log-linear model normalized over the
set Ry, with features described in Table 1. We
set C = 1.0 and use L-BFGS (Liu and Nocedal,
1989) for training.
Inference Although our learning mechanism
uses a local log-linear model, we perform infer-
ence globally on a per-frame basis by applying
hard structural constraints. Following Das et al.
(2014) and Punyakanok et al. (2008) we use the
log-probability of the local classifiers as a score in
an integer linear program (ILP) to assign roles sub-
ject to hard constraints described in §5.4 and §5.5.
We use an off-the-shelf ILP solver for inference.

1452

5 Experiments

In this section, we present our experiments and
the results achieved. We evaluate our novel frame
identification approach in isolation and also con-
joined with argument identification resulting in
full frame-semantic structures; before presenting
our model’s performance we first focus on the
datasets, baselines and the experimental setup.

5.1 Data
We evaluate our models on both FrameNet- and
PropBank-style structures. For FrameNet, we use
the full-text annotations in the FrameNet 1.5 re-
lease8 which was used by Das et al. (2014, §3.2).
We used the same test set as Das et al. contain-
ing 23 documents with 4,458 predicates. Of the
remaining 55 documents, 16 documents were ran-
domly chosen for development.9

For experiments with PropBank, we used the
Ontonotes corpus (Hovy et al., 2006), version 4.0,
and only made use of the Wall Street Journal doc-
uments; we used sections 2-21 for training, sec-
tion 24 for development and section 23 for testing.
This resembles the setup used by Punyakanok et
al. (2008). All the verb frame files in Ontonotes
were used for creating our frame lexicon.

5.2 Frame Identification Baselines
For comparison, we implemented a set of baseline
models, with varying feature configurations. The
baselines use a log-linear model that models the
following probability at training time:

p(y|x, `) =
eψ·f(y,x,`)∑
ȳ∈F`

eψ·f(ȳ,x,`)
(2)

At test time, this model chooses the best frame as
argmaxyψ · f(y, x, `) where argmax iterates over
the possible frames y ∈ F` if ` was seen in the
lexicon or the training data, or y ∈ F , if it was un-
seen, like the disambiguation scheme of §3. We
train this model by maximizing L2 regularized
log-likelihood, using L-BFGS; the regularization
constant was set to 0.1 in all experiments.

For comparison with our model from §3, which
we call WSABIE EMBEDDING, we implemented two
baselines with the log-linear model. Both the
baselines use features very similar to the input rep-
resentations described in §3.1. The first one com-
putes the direct dependents and dependency paths

8See https://framenet.icsi.berkeley.edu.
9These documents are listed in appendix A.

as described in §3.1 but conjoins them with the
word identity rather than a word embedding. Ad-
ditionally, this model uses the un-conjoined words
as backoff features. This would be a standard NLP
approach for the frame identification problem, but
is surprisingly competitive with the state of the art.
We call this baseline LOG-LINEAR WORDS. The sec-
ond baseline, tries to decouple the WSABIE training
from the embedding input, and trains a log linear
model using the embeddings. So the second base-
line has the same input representation as WSABIE

EMBEDDING but uses a log-linear model instead of
WSABIE. We call this model LOG-LINEAR EMBED-

DING.

5.3 Common Experimental Setup
We process our PropBank and FrameNet training,
development and test corpora with a shift-reduce
dependency parser that uses the Stanford conven-
tions (de Marneffe and Manning, 2013) and uses
an arc-eager transition system with beam size of 8;
the parser and its features are described by Zhang
and Nivre (2011). Before parsing the data, it is
tagged with a POS tagger trained with a condi-
tional random field (Lafferty et al., 2001) with the
following emission features: word, the word clus-
ter, word suffixes of length 1, 2 and 3, capitaliza-
tion, whether it has a hyphen, digit and punctua-
tion. Beyond the bias transition feature, we have
two cluster features for the left and right words in
the transition. We use Brown clusters learned us-
ing the algorithm of Uszkoreit and Brants (2008)
on a large English newswire corpus for cluster fea-
tures. We use the same word clusters for the argu-
ment identification features in Table 1.

We learn the initial embedding representations
for our frame identification model (§3) using a
deep neural language model similar to the one pro-
posed by Bengio et al. (2003). We use 3 hidden
layers each with 1024 neurons and learn a 128-
dimensional embedding from a large corpus con-
taining over 100 billion tokens. In order to speed
up learning, we use an unnormalized output layer
and a hinge-loss objective. The objective tries to
ensure that the correct word scores higher than a
random incorrect word, and we train with mini-
batch stochastic gradient descent.

5.4 Experimental Setup for FrameNet
Hyperparameters For our frame identification
model with embeddings, we search for the WSA-

BIE hyperparameters using the development data.

1453

SEMAFOR LEXICON FULL LEXICON

Development Data

Model All Ambiguous Rare All Ambiguous Rare
LOG-LINEAR WORDS 96.21 90.41 95.75 96.37 90.41 96.07
LOG-LINEAR EMBEDDING 96.06 90.56 95.38 96.19 90.49 95.70
WSABIE EMBEDDING (§3) 96.90 92.73 96.44 96.99 93.12 96.39

SEMAFOR LEXICON FULL LEXICON
Model All Ambiguous Rare Unseen All Ambiguous Rare

Test Data

Das et al. (2014) supervised 82.97 69.27 80.97 23.08
Das et al. (2014) best 83.60 69.19 82.31 42.67
LOG-LINEAR WORDS 84.71 70.97 81.70 27.27 87.44 70.97 87.10
LOG-LINEAR EMBEDDING 83.42 68.70 80.95 27.97 86.20 68.70 86.03
WSABIE EMBEDDING (§3) 86.58 73.67 85.04 44.76 88.73 73.67 89.38

Table 2: Frame identification results for FrameNet. See §5.6.

SEMAFOR LEXICON FULL LEXICON
Model Precision Recall F1 Precision Recall F1

Development Data
LOG-LINEAR WORDS 89.43 75.98 82.16 89.41 76.05 82.19
WSABIE EMBEDDING (§3) 89.89 76.40 82.59 89.94 76.27 82.54

Test Data

Das et al. supervised 67.81 60.68 64.05
Das et al. best 68.33 61.14 64.54
LOG-LINEAR WORDS 71.16 63.56 67.15 73.35 65.27 69.08
WSABIE EMBEDDING (§3) 72.79 64.95 68.64 74.44 66.17 70.06

Table 3: Full structure prediction results for FrameNet; this reports frame and argument identification performance jointly. We
skip LOG-LINEAR EMBEDDING because it underperforms all other models by a large margin.

We search for the stochastic gradient learning
rate in {0.0001, 0.001, 0.01}, the margin γ ∈
{0.001, 0.01, 0.1, 1} and the dimensionality of the
final vector space m ∈ {256, 512}, to maximize
the frame identification accuracy of ambiguous
lexical units; by ambiguous, we imply lexical units
that appear in the training data or the lexicon with
more than one semantic frame. The underlined
values are the chosen hyperparameters used to an-
alyze the test data.
Argument Candidates The candidate argument
extraction method used for the FrameNet data, (as
mentioned in §4) was adapted from the algorithm
of Xue and Palmer (2004) applied to dependency
trees. Since the original algorithm was designed
for verbs, we added a few extra rules to handle
non-verbal predicates: we added 1) the predicate
itself as a candidate argument, 2) the span ranging
from the sentence position to the right of the pred-
icate to the rightmost index of the subtree headed
by the predicate’s head; this helped capture cases
like “a few months” (where few is the predicate and
months is the argument), and 3) the span ranging
from the leftmost index of the subtree headed by
the predicate’s head to the position immediately
before the predicate, for cases like “your gift to
Goodwill” (where to is the predicate and your gift
is the argument).10

10Note that Das et al. (2014) describe the state of the art
in FrameNet-based analysis, but their argument identifica-
tion strategy considered all possible dependency subtrees in

Frame Lexicon In our experimental setup, we
scanned the XML files in the “frames” directory
of the FrameNet 1.5 release, which lists all the
frames, the corresponding roles and the associ-
ated lexical units, and created a frame lexicon to
be used in our frame and argument identification
models. We noted that this renders every lexical
unit as seen; in other words, at frame disambigua-
tion time on our test set, for all instances, we only
had to score the frames in F` for a predicate with
lexical unit ` (see §3 and §5.2). We call this setup
FULL LEXICON. While comparing with prior state
of the art on the same corpus, we noted that Das et
al. (2014) found several unseen predicates at test
time.11 For fair comparison, we took the lexical
units for the predicates that Das et al. considered
as seen, and constructed a lexicon with only those;
training instances, if any, for the unseen predicates
under Das et al.’s setup were thrown out as well.
We call this setup SEMAFOR LEXICON.12 We also
experimented on the set of unseen instances used
by Das et al.
ILP constraints For FrameNet, we used three
ILP constraints during argument identification
(§4). 1) each span could have only one role, 2)
each core role could be present only once, and 3)
all overt arguments had to be non-overlapping.

a parse, resulting in a much larger search space.
11Instead of using the frame files, Das et al. built a frame

lexicon from FrameNet’s exemplars and the training corpus.
12We got Das et al.’s seen predicates from the authors.

1454

Model All Ambiguous Rare
LOG-LINEAR WORDS 94.21 90.54 93.33

LOG-LINEAR EMBEDDING 93.81 89.86 93.73
WSABIE EMBEDDING (§3) 94.79 91.52 92.55

Dev data ↑ ↓ Test data
Model All Ambiguous Rare

LOG-LINEAR WORDS 94.74 92.07 91.32
LOG-LINEAR EMBEDDING 94.04 90.95 90.97
WSABIE EMBEDDING (§3) 94.56 91.82 90.62

Table 4: Frame identification accuracy results for PropBank.
The model and the column names have the same semantics
as Table 2.

Model P R F1

LOG-LINEAR WORDS 80.02 75.58 77.74
WSABIE EMBEDDING (§3) 80.06 75.74 77.84

Dev data ↑ ↓ Test data
Model P R F1

LOG-LINEAR WORDS 81.55 77.83 79.65
WSABIE EMBEDDING (§3) 81.32 77.97 79.61

Table 5: Full frame-structure prediction results for Propbank.
This is a metric that takes into account frames and arguments
together. See §5.7 for more details.

5.5 Experimental Setup for PropBank
Hyperparameters As in §5.4, we made a hyper-
parameter sweep in the same space. The chosen
learning rate was 0.01, while the other values were
γ = 0.01 and m = 512. Ambiguous lexical units
were used for this selection process.
Argument Candidates For PropBank we use
the algorithm of Xue and Palmer (2004) applied
to dependency trees.
Frame Lexicon For the PropBank experiments
we scanned the frame files for propositions in
Ontonotes 4.0, and stored possible core roles for
each verb frame. The lexical units were simply
the verb associating with the verb frames. There
were no unseen verbs at test time.
ILP constraints We used the constraints of Pun-
yakanok et al. (2008).

5.6 FrameNet Results
Table 2 presents accuracy results on frame iden-
tification.13 We present results on all predicates,
ambiguous predicates seen in the lexicon or the
training data, and rare ambiguous predicates that
appear ≤ 11 times in the training data. The WS-

ABIE EMBEDDING model from §3 performs signif-
icantly better than the LOG-LINEAR WORDS base-
line, while LOG-LINEAR EMBEDDING underperforms
in every metric. For the SEMAFOR LEXICON setup,
we also compare with the state of the art from Das

13We do not report partial frame accuracy that has been
reported by prior work.

Model P R F1

LOG-LINEAR WORDS 77.29 71.50 74.28
WSABIE EMBEDDING (§3) 77.13 71.32 74.11

Dev data ↑ ↓ Test data
Model P R F1

LOG-LINEAR WORDS 79.47 75.11 77.23
WSABIE EMBEDDING (§3) 79.36 75.04 77.14
Punyakanok et al. Collins 75.92 71.45 73.62

Punyakanok et al. Charniak 77.09 75.51 76.29
Punyakanok et al. Combined 80.53 76.94 78.69

Table 6: Argument only evaluation (semantic role labeling
metrics) using the CoNLL 2005 shared task evaluation script
(Carreras and Màrquez, 2005). Results from Punyakanok et
al. (2008) are taken from Table 11 of that paper.

et al. (2014), who used a semi-supervised learn-
ing method to improve upon a supervised latent-
variable log-linear model. For unseen predicates
from the Das et al. system, we perform better as
well. Finally, for the FULL LEXICON setting, the ab-
solute accuracy numbers are even better for our
best model. Table 3 presents results on the full
frame-semantic parsing task (measured by a reim-
plementation of the SemEval 2007 shared task
evaluation script) when our argument identifica-
tion model (§4) is used after frame identification.
We notice similar trends as in Table 2, and our re-
sults outperform the previously published best re-
sults, setting a new state of the art.

5.7 PropBank Results
Table 4 shows frame identification results on the
PropBank data. On the development set, our best
model performs with the highest accuracy on all
and ambiguous predicates, but performs worse on
rare ambiguous predicates. On the test set, the
LOG-LINEAR WORDS baseline performs best by a
very narrow margin. See §6 for a discussion.

Table 5 presents results where we measure pre-
cision, recall and F1 for frames and arguments to-
gether; this strict metric penalizes arguments for
mismatched frames, like in Table 3. We see the
same trend as in Table 4. Finally, Table 6 presents
SRL results that measures argument performance
only, irrespective of the frame; we use the eval-
uation script from CoNLL 2005 (Carreras and
Màrquez, 2005). We note that with a better frame
identification model, our performance on SRL im-
proves in general. Here, too, the embedding model
barely misses the performance of the best baseline,
but we are at par and sometimes better than the sin-
gle parser setting of a state-of-the-art SRL system
(Punyakanok et al., 2008).14

14The last row of Table 6 refers to a system which used the

1455

6 Discussion

For FrameNet, the WSABIE EMBEDDING model we
propose strongly outperforms the baselines on all
metrics, and sets a new state of the art. We be-
lieve that the WSABIE EMBEDDING model performs
better than the LOG-LINEAR EMBEDDING baseline
(that uses the same input representation) because
the former setting allows examples with differ-
ent labels and confusion sets to share informa-
tion; this is due to the fact that all labels live in
the same label space, and a single projection ma-
trix is shared across the examples to map the input
features to this space. Consequently, the WSABIE

EMBEDDING model can share more information be-
tween different examples in the training data than
the LOG-LINEAR EMBEDDING model. Since the LOG-

LINEAR WORDS model always performs better than
the LOG-LINEAR EMBEDDING model, we conclude
that the primary benefit does not come from the
input embedding representation.15

On the PropBank data, we see that the LOG-

LINEAR WORDS baseline has roughly the same per-
formance as our model on most metrics: slightly
better on the test data and slightly worse on the
development data. This can be partially explained
with the significantly larger training set size for
PropBank, making features based on words more
useful. Another important distinction between
PropBank and FrameNet is that the latter shares
frames between multiple lexical units. The ef-
fect of this is clearly observable from the “Rare”
column in Table 4. WSABIE EMBEDDING performs
poorly in this setting while LOG-LINEAR EMBEDDING

performs well. Part of the explanation has to do
with the specifics of WSABIE training. Recall that
the WSABIE EMBEDDING model needs to estimate
the label location in Rm for each frame. In other
words, it must estimate 512 parameters based on
at most 10 training examples. However, since the
input representation is shared across all frames,
every other training example from all the lexical
units affects the optimal estimate, since they all
modify the joint parameter matrixM . By contrast,
in the log-linear models each label has its own
set of parameters, and they interact only via the
normalization constant. The LOG-LINEAR WORDS

model does not have this entanglement, but cannot
share information between words. For PropBank,

combination of two syntactic parsers as input.
15One could imagine training a WSABIE model with word

features, but we did not perform this experiment.

these drawbacks and benefits balance out and we
see similar performance for LOG-LINEAR WORDS

and LOG-LINEAR EMBEDDING. For FrameNet, esti-
mating the label embedding is not as much of a
problem because even if a lexical unit is rare, the
potential frames can be frequent. For example, we
might have seen the SENDING frame many times,
even though telex.V is a rare lexical unit.

In comparison to prior work on FrameNet, even
our baseline models outperform the previous state
of the art. A particularly interesting comparison is
between our LOG-LINEAR WORDS baseline and the
supervised model of Das et al. (2014). They also
use a log-linear model, but they incorporate a la-
tent variable that uses WordNet (Fellbaum, 1998)
to get lexical-semantic relationships and smooths
over frames for ambiguous lexical units. It is
possible that this reduces the model’s power and
causes it to over-generalize. Another difference is
that when training the log-linear model, they nor-
malize over all frames, while we normalize over
the allowed frames for the current lexical unit.
This would tend to encourage their model to ex-
pend more of its modeling power to rule out pos-
sibilities that will be pruned out at test time.

7 Conclusion

We have presented a simple model that outper-
forms the prior state of the art on FrameNet-
style frame-semantic parsing, and performs at par
with one of the previous-best single-parser sys-
tems on PropBank SRL. Unlike Das et al. (2014),
our model does not rely on heuristics to con-
struct a similarity graph and leverage WordNet;
hence, in principle it is generalizable to varying
domains, and to other languages. Finally, we pre-
sented results on PropBank-style semantic role la-
beling with a system that included the task of au-
tomatic verb frame identification, in tune with the
FrameNet literature; we believe that such a sys-
tem produces more interpretable output, both from
the perspective of human understanding as well as
downstream applications, than pipelines that are
oblivious to the verb frame, only focusing on ar-
gument analysis.

Acknowledgments

We thank Emily Pitler for comments on an early
draft, and the anonymous reviewers for their valu-
able feedback.

1456

References
C. F. Baker, C. J. Fillmore, and J. B. Lowe. 1998.

The berkeley framenet project. In Proceedings of
COLING-ACL.

C. Baker, M. Ellsworth, and K. Erk. 2007. SemEval-
2007 Task 19: Frame semantic structure extraction.
In Proceedings of SemEval.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin.
2003. A neural probabilistic language model. Jour-
nal of Machine Learning Research, 3:1137–1155.

X. Carreras and L. Màrquez. 2004. Introduction to the
CoNLL-2004 shared task: Semantic role labeling.
In Proceedings of CoNLL.

X. Carreras and L. Màrquez. 2005. Introduction to the
CoNLL-2005 shared task: semantic role labeling. In
Proceedings of CoNLL.

R. Collobert and J. Weston. 2008. A unified architec-
ture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of
ICML.

D. Das, N. Schneider, D. Chen, and N. A. Smith. 2010.
Probabilistic frame-semantic parsing. In Proceed-
ings of NAACL-HLT.

D. Das, D. Chen, A. F. T. Martins, N. Schneider, and
N. A. Smith. 2014. Frame-semantic parsing. Com-
putational Linguistics, 40(1):9–56.

M.-C. de Marneffe and C. D. Manning, 2013. Stanford
typed dependencies manual.

C. Fellbaum, editor. 1998. WordNet: an electronic
lexical database.

C. J. Fillmore, C. R. Johnson, and M. R. Petruck. 2003.
Background to FrameNet. International Journal of
Lexicography, 16(3):235–250.

C. J. Fillmore. 1982. Frame Semantics. In Linguis-
tics in the Morning Calm, pages 111–137. Hanshin
Publishing Co., Seoul, South Korea.

D. Gildea and D. Jurafsky. 2002. Automatic label-
ing of semantic roles. Computational Linguistics,
28(3):245–288.

E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, and
R. Weischedel. 2006. Ontonotes: The 90 In Pro-
ceedings of NAACL-HLT.

R. Johansson and P. Nugues. 2007. LTH: semantic
structure extraction using nonprojective dependency
trees. In Proceedings of SemEval.

A. Klementiev, I. Titov, and B. Bhattarai. 2012. In-
ducing crosslingual distributed representations of
words. In Proceedings of COLING.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceedings
of ICML.

D. C. Liu and J. Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical Programming, 45(3):503 – 528.

L. Màrquez, X. Carreras, K. C. Litkowski, and
S. Stevenson. 2008. Semantic role labeling: an in-
troduction to the special issue. Computational Lin-
guistics, 34(2):145–159.

A. Meyers, R. Reeves, C. Macleod, R. Szekely,
V. Zielinska, B. Young, and R. Grishman. 2004.
The NomBank project: An interim report. In Pro-
ceedings of NAACL/HLT Workshop on Frontiers in
Corpus Annotation.

J. Mitchell and M. Lapata. 2008. Vector-based models
of semantic composition. In Proceedings of ACL-
HLT.

M. Palmer, D. Gildea, and P. Kingsbury. 2005. The
Proposition bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1):71–106.

V. Punyakanok, D. Roth, and W. Yih. 2008. The im-
portance of syntactic parsing and inference in se-
mantic role labeling. Computational Linguistics,
34(2):257–287.

R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and
C. D. Manning. 2011. Semi-supervised recursive
autoencoders for predicting sentiment distributions.
In Proceedings of EMNLP.

J. Turian, L. Ratinov, and Y. Bengio. 2010. Word
representations: A simple and general method for
semi-supervised learning. In Proceedings of ACL,
Stroudsburg, PA, USA.

N. Usunier, D. Buffoni, and P. Gallinari. 2009. Rank-
ing with ordered weighted pairwise classification. In
ICML.

J. Uszkoreit and T. Brants. 2008. Distributed word
clustering for large scale class-based language mod-
eling in machine translation. In Proceedings of
ACL-HLT.

K. Q. Weinberger and L. K. Saul. 2009. Distance met-
ric learning for large margin nearest neighbor clas-
sification. Journal of Machine Learning Research,
10:207–244.

J. Weston, S. Bengio, and N. Usunier. 2011. Wsabie:
Scaling up to large vocabulary image annotation. In
Proceedings of IJCAI.

N. Xue and M. Palmer. 2004. Calibrating features for
semantic role labeling. In Proceedings of EMNLP
2004.

Y. Zhang and J. Nivre. 2011. Transition-based depen-
dency parsing with rich non-local features. In Pro-
ceedings of ACL-HLT.

1457

Number Filename
dev-1 LUCorpus-v0.3 20000420 xin eng-NEW.xml
dev-2 NTI SouthAfrica Introduction.xml
dev-3 LUCorpus-v0.3 CNN AARONBROWN ENG 20051101 215800.partial-NEW.xml
dev-4 LUCorpus-v0.3 AFGP-2002-600045-Trans.xml
dev-5 PropBank TicketSplitting.xml
dev-6 Miscellaneous Hijack.xml
dev-7 LUCorpus-v0.3 artb 004 A1 E1 NEW.xml
dev-8 NTI WMDNews 042106.xml
dev-9 C-4 C-4Text.xml
dev-10 ANC EntrepreneurAsMadonna.xml
dev-11 NTI LibyaCountry1.xml
dev-12 NTI NorthKorea NuclearOverview.xml
dev-13 LUCorpus-v0.3 20000424 nyt-NEW.xml
dev-14 NTI WMDNews 062606.xml
dev-15 ANC 110CYL070.xml
dev-16 LUCorpus-v0.3 CNN ENG 20030614 173123.4-NEW-1.xml

Table 7: List of files used as development set for the FrameNet 1.5 corpus.

A Development Data

Table 7 features a list of the 16 randomly selected
documents from the FrameNet 1.5 corpus, which
we used for development. The resultant develop-
ment set consists of roughly 4,500 predicates. We
use the same test set as in Das et al. (2014), con-
taining 23 documents and 4,458 predicates.

1458

