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Abstract

This work explores methods of automat-
ically detecting corrections of individual
mistakes in sentence revisions for ESL
students. We have trained a classifier
that specializes in determining whether
consecutive basic-edits (word insertions,
deletions, substitutions) address the same
mistake. Experimental result shows that
the proposed system achieves an F1-score
of 81% on correction detection and 66%
for the overall system, out-performing the
baseline by a large margin.

1 Introduction

Quality feedback from language tutors can
help English-as-a-Second-Language (ESL) stu-
dents improve their writing skills. One of the tu-
tors’ tasks is to isolate writing mistakes within
sentences, and point out (1) why each case is
considered a mistake, and (2) how each mistake
should be corrected. Because this is time consum-
ing, tutors often just rewrite the sentences with-
out giving any explanations (Fregeau, 1999). Due
to the effort involved in comparing revisions with
the original texts, students often fail to learn from
these revisions (Williams, 2003).

Computer aided language learning tools offer
a solution for providing more detailed feedback.
Programs can be developed to compare the stu-
dent’s original sentences with the tutor-revised
sentences. Swanson and Yamangil (2012) have
proposed a promising framework for this purpose.
Their approach has two components: one to de-
tect individual corrections within a revision, which
they termed correction detection; another to deter-
mine what the correction fixes, which they termed
error type selection. Although they reported a
high accuracy for the error type selection classifier
alone, the bottleneck of their system is the other

component – correction detection. An analysis of
their system shows that approximately 70% of the
system’s mistakes are caused by mis-detections
in the first place. Their correction detection al-
gorithm relies on a set of heuristics developed
from one single data collection (the FCE corpus
(Yannakoudakis et al., 2011)). When determining
whether a set of basic-edits (word insertions, dele-
tions, substitutions) contributes to the same cor-
rection, these heuristics lack the flexibility to adapt
to a specific context. Furthermore, it is not clear if
the heuristics will work as well for tutors trained
to mark up revisions under different guidelines.

We propose to improve upon the correction de-
tection component by training a classifier that de-
termines which edits in a revised sentence address
the same error in the original sentence. The classi-
fier can make more accurate decisions adjusted to
contexts. Because the classifier were trained on re-
visions where corrections are explicitly marked by
English experts, it is also possible to build systems
adjusted to different annotation standards.

The contributions of this paper are: (1) We show
empirically that a major challenge in correction
detection is to determine the number of edits that
address the same error. (2) We have developed a
merging model that reduces mis-detection by 1/3,
leading to significant improvement in the accu-
racies of combined correction detection and er-
ror type selection. (3) We have conducted experi-
ments across multiple corpora, indicating that the
proposed merging model is generalizable.

2 Correction Detection

Comparing a student-written sentence with its re-
vision, we observe that each correction can be de-
composed into a set of more basic edits such as
word insertions, word deletions and word substi-
tutions. In the example shown in Figure 1, the
correction “to change ⇒ changing” is composed
of a deletion of to and a substitution from change
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Figure 1: Detecting corrections from revisions. Our system detects individual corrections by comparing the original sentence
with its revision, so that each correction addresses one error. Each polygon corresponds to one correction; the labels are codes
of the error types. The codes follow the annotation standard in FCE corpus (Nicholls, 2003). In this example, W is incorrect
Word order; UT is Unnecessary preposiTion; FV is wrong Verb Form; RN is Nnoun needs to be Replaced; ID is IDiom error.

Figure 2: A portion of the example from Figure 1 undergoing the two-step correction detection process. The basic edits are
indicated by black polygons. The corrections are shown in red polygons.

(a) (b)

Figure 3: Basic edits extracted by the edit-distance algo-
rithm (Levenshtein, 1966) do not necessarily match our lin-
guistic intuition. The ideal basic-edits are shown in Figure
3a, but since the algorithm only cares about minimizing the
number of edits, it may end up extracting basic-edits shown
in Figure 3b.

to changing; the correction “moment ⇒ minute”
is itself a single word substitution. Thus, we can
build systems to detect corrections which operates
in two steps: (1) detecting the basic edits that took
place during the revision, and (2) merging those
basic edits that address the same error. Figure 2 il-
lustrates the process for a fragment of the example
sentence from Figure 1.

In practice, however, this two-step approach
may result in mis-detections due to ambiguities.
Mis-detections may be introduced from either
steps. While detecting basic edits, Figures 3 gives
an example of problems that might arise. Because
the Levenshtein algorithm only tries to minimize
the number of edits, it does not care whether the
edits make any linguistic sense. For merging basic
edits, Swanson and Yamangil applied a distance
heuristic – basic-edits that are close to each other
(e.g. basic edits with at most one word lying in
between) are merged. Figure 4 shows cases for
which the heuristic results in the wrong scope.

These errors caused their system to mis-detect
30% of the corrections. Since mis-detected cor-
rections cannot be analyzed down the pipeline,

(a) The basic edits are addressing the same problem. But
these basic edits are non-adjacent, and therefore not merged by
S&Y’s algorithm.

(b) The basic edits in the above two cases address different
problems though they are adjacent. S&Y’s merging algorithm
incorrectly merges them.

Figure 4: Merging mistakes by the algorithm proposed in
Swanson and Yamangil (2012) (S&Y), which merges adja-
cent basic edits.

the correction detection component became the
bottle-neck of their overall system. Out of the
42% corrections that are incorrectly analyzed1,
30%/42%≈70% are caused by mis-detections in
the first place. An improvement in correction de-
tection may increase the system accuracy overall.

We conducted an error analysis to attribute er-
rors to either step when the system detects a wrong
set of corrections for a sentence. We examine
the first step’s output. If the resulting basic ed-
its do not match with those that compose the ac-
tual corrections, we attribute the error to the first
step. Otherwise, we attribute the error to the sec-
ond step. Our analysis confirms that the merging
step is the bottleneck in the current correction de-
tection system – it accounts for 75% of the mis-
detections. Therefore, to effectively reduce the
algorithm’s mis-detection errors, we propose to

1Swanson and Yamangil reported an overall system with
58% F-score.
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build a classifier to merge with better accuracies.
Other previous tasks also involve comparing

two sentences. Unlike evaluating grammar er-
ror correction systems (Dahlmeier and Ng, 2012),
correction detection cannot refer to a gold stan-
dard. Our error analysis above also highlights our
task’s difference with previous work that identify
corresponding phrases between two sentences, in-
cluding phrase extraction (Koehn et al., 2003) and
paraphrase extraction (Cohn et al., 2008). They
are fundamentally different in that the granularity
of the extracted phrase pairs is a major concern
in our work – we need to guarantee each detected
phrase pair to address exactly one writing prob-
lem. In comparison, phrase extraction systems
aim to improve the end-to-end MT or paraphrasing
systems. A bigger concern is to guarantee the ex-
tracted phrase pairs are indeed translations or para-
phrases. Recent work therefore focuses on identi-
fying the alignment/edits between two sentences
(Snover et al., 2009; Heilman and Smith, 2010).

3 A Classifier for Merging Basic-Edits

Figures 4 highlights the problems with indiscrimi-
nantly merging basic-edits that are adjacent. Intu-
itively, it seems that the decision should be more
context dependent. Certain patterns may indicate
that two adjacent basic-edits are a part of the same
correction while others may indicate that they each
address a different problem. For example, in Fig-
ure 5a, when the insertion of one word is followed
by the deletion of the same word, the insertion
and deletion are likely addressing one single error.
This is because these two edits would combine to-
gether as a word-order change. On the other hand,
in Figure 5b, if one edit includes a substitution be-
tween words with the same POS’s, then it is likely
fixing a word choice error by itself. In this case, it
should not be merged with other edits.

To predict whether two basic-edits address the
same writing problem more discriminatively, we
train a Maximum Entropy binary classifier based
on features extracted from relevant contexts for
the basic edits. We use features in Table 1 in the
proposed classifier. We design the features to in-
dicate: (A) whether merging the two basic-edits
matches the pattern for a common correction. (B)
whether one basic-edit addresses one single error.

We train the classifier using samples extracted
from revisions where individual corrections are
explicitly annotated. We first extract the basic-

(a) The pattern indicates that
the two edits address the
same problem

(b) The pattern indicates that
the two edits do not address
the same problem

Figure 5: Patterns indicating whether two edits address the
same writing mistake.

Figure 6: Extracting training instances for the merger. Our
goal is to train classifiers to tell if two basic edits should
be merged (True or False). We break each correction (outer
polygons, also colored in red) in the training corpus into a set
of basic edits (black polygons). We construct an instance for
each consecutive pair of basic edits. If two basic edits were
extracted from the same correction, we will mark the outcome
as True, otherwise we will mark the outcome as False.

edits that compose each correction. We then create
a training instance for each pair of two consecutive
basic edits: if two consecutive basic edits need to
be merged, we will mark the outcome as True, oth-
erwise it is False. We illustrate this in Figure 6.

4 Experimental Setup

We combine Levenshtein algorithm with different
merging algorithms for correction detection.

4.1 Dataset

An ideal data resource would be a real-world col-
lection of student essays and their revisions (Tajiri
et al., 2012). However, existing revision corpora
do not have the fine-grained annotations necessary
for our experimental gold standard. We instead
use error annotated data, in which the corrections
were provided by human experts. We simulate the
revisions by applying corrections onto the original
sentence. The teachers’ annotations are treated as
gold standard for the detailed corrections.

We considered four corpora with different ESL
populations and annotation standards, including
FCE corpus (Yannakoudakis et al., 2011), NU-
CLE corpus (Dahlmeier et al., 2013), UIUC cor-
pus2 (Rozovskaya and Roth, 2010) and HOO2011
corpus (Dale and Kilgarriff, 2011). These corpora
all provide experts’ corrections along with error

2UIUC corpus contains annotations of essays collected
from ICLE (Granger, 2003) and CLEC (Gui and Yang, 2003).
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Type name description

A

gap-between-edits Gap between the two edits. In particular, we use the number of words between the two edits’
original words, as well as the revised words. Note that Swanson and Yamangil’s approach is a
special case that only considers if the basic-edits have zero gap in both sentences.

tense-change We detect patterns such as: if the original-revision pair matches the pattern “V-ing⇒to V”.
word-order-error Whether the basic-edits’ original word set and the revised word set are the same (one or zero).
same-word-set If the original sentence and the revised sentence have the same word set, then it’s likely that all

the edits are fixing the word order error.
revised-to The phrase comprised of the two revised words.

B

editdistance=1 If one basic-edit is a substitution, and the original/revised word only has 1 edit distance, it
indicates that the basic-edit is fixing a misspelling error.

not-in-dict If the original word does not have a valid dictionary entry, then it indicates a misspelling error.
word-choice If the original and the revised words have the same POS, then it is likely fixing a word choice

error.
preposition-error Whether the original and the revised words are both prepositions.

Table 1: Features used in our proposed classifier.

corpus sentences sentences with≥ 2 corrections
revised sentences

FCE 33,900 53.45%
NUCLE 61,625 48.74%
UIUC 883 61.32%
HOO2011 966 42.05%

Table 2: Basic statistics of the corpora that we consider.

type mark-ups. The basic statistics of the corpora
are shown in Table 2. In these corpora, around half
of revised sentences contains multiple corrections.
We have split each corpus into 11 equal parts. One
part is used as the development dataset; the rest are
used for 10-fold cross validation.

4.2 Evaluation Metrics
In addition to evaluating the merging algorithms
on the stand-alone task of correction detection, we
have also plugged in the merging algorithms into
an end-to-end system in which every automati-
cally detected correction is further classified into
an error type. We replicated the error type selector
described in Swanson and Yamangil (2012). The
error type selector’s accuracies are shown in Table
33 . We compare two merging algorithms, com-
bined with Levenshtein algorithm:

S&Y The merging heuristic proposed by Swan-
son and Yamangil, which merges the adjacent ba-
sic edits into single corrections.

MaxEntMerger We use the Maximum Entropy
classifier to predict whether we should merge the
two edits, as described in Section 34.

We evaluate extrinsically the merging compo-
nents’ effect on overall system performance by

3Our replication has a slightly lower error type selection
accuracy on FCE (80.02%) than the figure reported by Swan-
son and Yamangil (82.5%). This small difference on error
type selection does not affect our conclusions about correc-

Corpus Error Types Accuracy
FCE 73 80.02%
NUCLE 27 67.36%
UIUC 8 80.23%
HOO2011 38 64.88%

Table 3: Error type selection accuracies on different cor-
pora. We use a Maximum Entropy classifier along with fea-
tures suggested by Swanson and Yamangil for this task. The
reported figures come from 10-fold cross validations on dif-
ferent corpora.

comparing the boundaries of system’s detected
corrections with the gold standard. We evaluate
both (1) the F-score in detecting corrections (2)
the F-score in correctly detecting both the correc-
tions’ and the error types they address.

5 Experiments

We design experiments to answer two questions:

1. Do the additional contextual information
about correction patterns help guide the merging
decisions? How much does a classifier trained for
this task improve the system’s overall accuracy?

2. How well does our method generalize over re-
visions from different sources?

Our major experimental results are presented in
Table 4 and Table 6. Table 4 compares the over-
all educational system’s accuracies with different
merging algorithms. Table 6 shows the system’s
F1 score when trained and tested on different cor-
pora. We make the following observations:

First, Table 4 shows that by incorporating cor-
rection patterns into the merging algorithm, the

tion detection.
4We use the implementation at http://homepages.

inf.ed.ac.uk/lzhang10/maxent_toolkit.
html.
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errors in correction detection step were reduced.
This led to a significant improvement on the over-
all system’s F1-score on all corpora. The improve-
ment is most noticeable on FCE corpus, where
the error in correction detection step was reduced
by 9%. That is, one third of the correction mis-
detections were eliminated. Table 5 shows that the
number of merging errors are significantly reduced
by the new merging algorithm. In particular, the
number of false positives (system proposes merges
when it should not) is significantly reduced.

Second, our proposed model is able to gener-
alize over different corpora. As shown in Table
6. The models built on corpora can generally im-
prove the correction detection accuracy5. Mod-
els built on the same corpus generally perform
the best. Also, as suggested by the experimental
result, among the four corpora, FCE corpus is a
comparably good resource for training correction
detection models with our current feature set. One
reason is that FCE corpus has many more training
instances, which benefits model training. We tried
varying the training dataset size, and test it on dif-
ferent corpora. Figure 7 suggests that the model’s
accuracies increase with the training corpus size.

6 Conclusions

A revision often contains multiple corrections that
address different writing mistakes. We explore
building computer programs to accurately detect
individual corrections in one single revision. One
major challenge lies in determining whether con-
secutive basic-edits address the same mistake. We
propose a classifier specialized in this task. Our
experiments suggest that: (1) the proposed classi-
fier reduces correction mis-detections in previous
systems by 1/3, leading to significant overall sys-
tem performance. (2) our method is generalizable
over different data collections.
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Method Corpus Correction
Detection F1

Overall
F1-score

S&Y FCE 70.40% 57.10%
MaxEntMerger FCE 80.96% 66.36%
S&Y NUCLE 61.18% 39.32%
MaxEntMerger NUCLE 63.88% 41.00%
S&Y UIUC 76.57% 65.08%
MaxEntMerger UIUC 82.81% 70.55%
S&Y HOO2011 68.73% 50.95%
MaxEntMerger HOO2011 75.71% 56.14%

Table 4: Extrinsic evaluation, where we plugged the two
merging models into an end-to-end feedback detection sys-
tem by Swanson and Yamangil.

Merging algorithm TP FP FN TN
S&Y 33.73% 13.46% 5.71% 47.10%
MaxEntMerger 36.04% 3.26% 3.41% 57.30%

Table 5: Intrinsic evaluation, where we evaluate the pro-
posed merging model’s prediction accuracy on FCE corpus.
This table shows a breakdown of true-positives (TP), false-
positives (FP), false-negatives (FN) and true-negatives (TN)
for the system built on FCE corpus.

training
testing FCE NUCLE UIUC HOO2011

S&Y 70.44 61.18% 76.57% 68.73%
FCE 80.96% 61.26% 83.07% 75.43%
NUCLE 74.53% 63.88% 78.57% 74.73%
UIUC 77.25% 58.21% 82.81% 70.83%
HOO2011 71.94% 54.99% 71.19% 75.71%

Table 6: Correction detection experiments by building the
model on one corpus, and applying it onto another. We
evaluate the correction detection performance with F1 score.
When training and testing on the same corpus, we run a 10-
fold cross validation.
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Figure 7: We illustrate the performance of correction detec-
tion systems trained on subsets of FCE corpus. Each curve in
this figure represents the F1-scores for correction detection
of the model trained on a subset of FCE and tested on differ-
ent corpora. When testing on FCE, we used 1

11
of the FCE

corpus, which we kept as development data.
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