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Abstract

We report improved AMR parsing results
by adding a new action to a transition-
based AMR parser to infer abstract con-
cepts and by incorporating richer features
produced by auxiliary analyzers such as
a semantic role labeler and a coreference
resolver. We report final AMR parsing
results that show an improvement of 7%
absolute in F1 score over the best pre-
viously reported result. Our parser is
available at: https://github.com/
Juicechuan/AMRParsing

1 Introduction

AMR parsing is the task of taking a sentence as
input and producing as output an Abstract Mean-
ing Representation (AMR) that is a rooted, di-
rected, edge-labeled and leaf-labeled graph that is
used to represent the meaning of a sentence (Ba-
narescu et al., 2013). AMR parsing has drawn
an increasing amount of attention recently. The
first published AMR parser, JAMR (Flanigan et
al., 2014), performs AMR parsing in two stages:
concept identification and relation identification.
Flanigan et al. (2014) treat concept identification
as a sequence labeling task and utilize a semi-
Markov model to map spans of words in a sen-
tence to concept graph fragments. For relation
identification, they adopt graph-based techniques
similar to those used in dependency parsing (Mc-
Donald et al., 2005). Instead of finding maximum
spanning trees (MST) over words, they propose an
algorithm that finds the maximum spanning con-
nected subgraph (MSCG) over concept fragments
identified in the first stage.

A competitive alternative to the MSCG ap-
proach is transition-based AMR parsing. Our
previous work (Wang et al., 2015) describes a
transition-based system that also involves two
stages. In the first step, an input sentence is

parsed into a dependency tree with a dependency
parser. In the second step, the transition-based
AMR parser transforms the dependency tree into
an AMR graph by performing a series of actions.
Note that the dependency parser used in the first
step can be any off-the-shelf dependency parser
and does not have to trained on the same data set
as used in the second step.
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Figure 1: An example showing abstract concept
have-org-role-91 for the sentence “Israel
foreign minister visits South Korea.”

Unlike a dependency parse where each leaf
node corresponds to a word in a sentence and there
is an inherent alignment between the words in a
sentence and the leaf nodes in the parse tree, the
alignment between the word tokens in a sentence
and the concepts in an AMR graph is non-trivial.
Both JAMR and our transition-based parser rely
on a heuristics based aligner that can align the
words in a sentence and concepts in its AMR with
a 90% F1 score, but there are some concepts in
the AMR that cannot be aligned to any word in a
sentence.

This is illustrated in Figure 1 where the concept
have-org-role-91 is not aligned to any word
or word sequence. We refer to these concepts as
abstract concepts, and existing AMR parsers do
not have a systematic way of inferring such ab-
stract concepts.
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Current AMR parsers are in their early stages of
development, and their features are not yet fully
developed. For example, the AMR makes heavy
use of the framesets and semantic role labels used
in the Proposition Bank (Palmer et al., 2005), and
it would seem that information produced by a se-
mantic role labeling system trained on the Prop-
Bank can be used as features to improve the AMR
parsing accuracy. Similarly, since AMR repre-
sents limited within-sentence coreference, coref-
erence information produced by an off-the-shelf
coreference system should benefit the AMR parser
as well.

In this paper, we describe an extension to our
transition-based AMR parser (Wang et al., 2015)
by adding a new action to infer the abstract
concepts in an AMR, and new features derived
from an off-the-shelf semantic role labeling sys-
tem (Pradhan et al., 2004) and coreference system
(Lee et al., 2013). We also experimented with
adding Brown clusters as features to the AMR
parser. Additionally, we experimented with us-
ing different syntactic parsers in the first stage.
Following our previous work, we use the aver-
aged perceptron algorithm (Collins, 2002) to train
the parameters of the model and use the greedy
parsing strategy during decoding to determine the
best action sequence to apply for each training in-
stance. Our results show that (i) the transition-
based AMR parser is very stable across the dif-
ferent parsers used in the first stage, (ii) adding
the new action significantly improves the parser
performance, and (iii) semantic role information
is beneficial to AMR parsing when used as fea-
tures, while the Brown clusters do not make a dif-
ference and coreference information slightly hurts
the AMR parsing performance.

The rest of the paper is organized as follows. In
Section 2 we briefly describe the transition-based
parser, and in Section 3 we describe our exten-
sions. We report experimental results in Section
4 and conclude the paper in Section 5.

2 Transition-based AMR Parser

The transition-based parser first uses a depen-
dency parser to parse an input sentence, and then
performs a limited number of highly general ac-
tions to transform the dependency tree to an AMR
graph. The transition actions are briefly described
below but due to the limited space, we cannot
describe the full details of these actions, and the
reader is referred to our previous work (Wang et

al., 2015) for detailed descriptions of these ac-
tions:

• NEXT-EDGE-lr (ned): Assign the current
edge with edge label lr and go to next edge.
• SWAP-lr (sw): Swap the current edge, make

the current dependent as the new head, and
assign edge label lr to the swapped edge.
• REATTACHk-lr (reat): Reattach current de-

pendent to node k and assign edge label lr.
• REPLACE-HEAD (rph): Replace current head

node with current dependent node.
• REENTRANCEk-lr (reen): Add another head

node k to current dependent and assign label
lr to edge between k and current dependent.
• MERGE (mrg): Merge two nodes connected

by the edge into one node.

From each node in the dependency tree, the parser
performs the following 2 actions:

• NEXT-NODE-lc (nnd): Assign the current
node with concept label lc and go to next
node.
• DELETE-NODE (dnd): Delete the current

node and all edges associated with current
node.

Crucially, none of these actions can infer the
types of abstract concepts illustrated in Figure 1.
And this serves as our baseline parser.
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Figure 2: Enhanced Span Graph for AMR in Fig-
ure 1, “Israel foreign minister visits South Korea.”
sx,y corresponds to sentence span (x, y).

3 Parser Extensions

3.1 Inferring Abstract Concepts
We previously create the learning target by repre-
senting an AMR graph as a Span Graph, where
each AMR concept is annotated with the text span
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of the word or the (contiguous) word sequence it is
aligned to. However, abstract concepts that are not
aligned to any word or word sequence are simply
ignored and are unreachable during training. To
address this, we construct the span graph by keep-
ing the abstract concepts as they are in the AMR
graph, as illustrated in Figure 2.

In order to predict these abstract concepts, we
design an INFER-lc action that is applied in the fol-
lowing way: when the parser visits an node in de-
pendency tree, it inserts an abstract node with con-
cept label lc right between the current node and its
parent. For example in Figure 3, after applying ac-
tion INFER-have-org-role-91 on node min-
ister, the abstract concept is recovered and subse-
quent actions can be applied to transform the sub-
graph to its correct AMR.

visits

minister

Israel foreign

visits

have-org-role-91

minister

Israel foreign

Figure 3: INFER-have-org-role-91 action

3.2 Feature Enrichment

In our previous work, we only use simple lexi-
cal features and structural features. We extend the
feature set to include (i) features generated by a
semantic role labeling system—ASSERT (Prad-
han et al., 2004), including a frameset disam-
biguator trained using a word sense disambigua-
tion system—IMS (Zhong and Ng, 2010) and a
coreference system (Lee et al., 2013) and (ii) fea-
tures generated using semi-supervised word clus-
ters (Turian et al., 2010; Koo et al., 2008).

Coreference features Coreference is typically
represented as a chain of mentions realized as
noun phrases or pronouns. AMR, on the other
hand, represents coreference as re-entrance and
uses one concept to represent all co-referring enti-
ties. To use the coreference information to inform
AMR parsing actions, we design the following two
features: 1) SHARE DEPENDENT. When applying
REENTRANCEk-lr action on edge (a, b), we check
whether the corresponding head node k of a candi-
date concept has any dependent node that co-refers
with current dependent b. 2) DEPENDENT LABEL.
If SHARE DEPENDENT is true for head node k and
assuming k’s dependent m co-refers with the cur-

rent dependent, the value of this feature is set to
the dependency label between k and m.

For example, for the partial graph shown in Fig-
ure 4, when examining edge (wants, boy), we
may consider REENTRANCEbelieve-ARG1 as one
of the candidate actions. The candidate head
believe has dependent him which is co-referred
with current dependent boy, therefore the value of
feature SHARE DEPENDENT is set to true for this
candidate action. Also the value of feature DE-
PENDENT LABEL is dobj given the dependency la-
bel between (believe, him).

wants

boy believe

girl him

ARG1

semantic role labeling:
wants, want-01, ARG0:the boy, ARG1:the girl to believe him
coreference chain: {boy, him}

For action NEXT-NODE-want-01
EQ FRAMESET: true

For action REENTRANCEbelieve-ARG1
SHARE DEPENDENT: true
DEPENDENT LABEL: dobj

Figure 4: An example of coreference feature and
semantic role labeling feature in partial parsing
graph of sentence,“The boy wants the girl to be-
lieve him.”

Semantic role labeling features We use the
following semantic role labeling features: 1)
EQ FRAMESET. For action that predicts the con-
cept label (NEXT-NODE-lc), we check whether the
candidate concept label lc matches the frameset
predicted by the semantic role labeler. For ex-
ample, for partial graph in Figure 4, when we
examine node wants, one of the candidate ac-
tions would be NEXT-NODE-want-01. Since
the candidate concept label want-01 is equal
to node wants’s frameset want-01 as predicted
by the semantic role labeler, the value of feature
EQ FRAMESET is set to true. 2) IS ARGUMENT.
For actions that predicts the edge label, we check
whether the semantic role labeler predicts that the
current dependent is an argument of the current
head. Note that the arguments in semantic role la-
beler output are non-terminals which corresponds
to a sentence span. Here we simply take the head
word in the sentence span as the argument.

Word Clusters For the semi-supervised word
cluster feature, we use Brown clusters, more
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specifically, 1000 classes word cluster trained
by Turian et al. (2010). We use prefixes of lengths
4,6,10,20 of the word’s bit-string as features.

4 Experiments

We first tune and evaluate our system on the
newswire section of LDC2013E117 dataset. Then
we show our parser’s performance on the recent
LDC2014T12 dataset.

4.1 Experiments on LDC2013E117
We first conduct our experiments on the
newswire section of AMR annotation corpus
(LDC2013E117). The train/dev/test split of
dataset is 4.0K/2.1K/2.1K, which is identical to
the settings of JAMR. We evaluate our parser with
Smatch v2.0 (Cai and Knight, 2013) on all the
experiments.

System P R F1

Charniak (ON) .67 .64 .65
Charniak .66 .62 .64
Stanford .64 .62 .63
Malt .65 .61 .63
Turbo .65 .61 .63

Table 1: AMR parsing performance on develop-
ment set using different syntactic parsers.

System P R F1

Charniak (ON) .67 .64 .65
+INFER .71 .67 .69
+INFER+BROWN .71 .68 .69
+INFER+BROWN+SRL .72 .69 .71
+INFER+BROWN+SRL+COREF .72 .69 .70

Table 2: AMR parsing performance on the devel-
opment set.

4.1.1 Impact of different syntactic parsers
We experimented with four different parsers: the
Stanford parser (Manning et al., 2014), the Char-
niak parser (Charniak and Johnson, 2005) (Its
phrase structure output is converted to dependency
structure using the Stanford CoreNLP converter),
the Malt Parser (Nivre et al., 2006), and the Turbo
Parser (Martins et al., 2013). All the parsers we
used are trained on the 02-22 sections of the Penn
Treebank, except for CHARNIAK(ON), which is
trained on the OntoNotes corpus (Hovy et al.,
2006) on the training and development partitions
used by Pradhan et al. (2013) after excluding a few

documents that overlapped with the AMR corpus1.
All the different dependency trees are then used as
input to our baseline system and we evaluate AMR
parsing performance on the development set.

From Table 1, we can see that the perfor-
mance of the baseline transition-based system
remains very stable when different dependency
parsers used are trained on same data set. How-
ever, the Charniak parser that is trained on a
much larger and more diverse dataset (CHARNIAK

(ON)) yields the best overall AMR parsing perfor-
mance. Subsequent experiments are all based on
this version of the Charniak parser.

4.1.2 Impact of parser extensions

In Table 2 we present results from extending the
transition-based AMR parser. All experiments are
conducted on the development set. From Table
2, we can see that the INFER action yields a 4
point improvement in F1 score over the CHAR-
NIAK(ON) system. Adding Brown clusters im-
proves the recall by 1 point, but the F1 score re-
mains unchanged. Adding semantic role features
on top of the Brown clusters leads to an improve-
ment of another 2 points in F1 score, and gives us
the best result. Adding coreference features actu-
ally slightly hurts the performance.

4.1.3 Final Result on Test Set

We evaluate the best model we get from §4.1 on
the test set, as shown in Table 3. For comparison
purposes, we also include results of all published
parsers on the same dataset: the updated version of
JAMR, the old version of JAMR (Flanigan et al.,
2014), the Stanford AMR parser (Werling et al.,
2015), the SHRG-based AMR parser (Peng et al.,
2015) and our baseline parser (Wang et al., 2015).

1Documents in the AMR corpus have some overlap with
the documents in the OntoNotes corpus. We excluded these
documents (which are primarily from Xinhua newswirte)
from the training data while retraining the Charniak parser,
ASSERT semantic role labeler, and IMS frameset
disambiguation tool). The full list of overlapping documents
is available at http://cemantix.org/ontonotes/ontonotes-
amr-document-overlap.txt
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System P R F1

Our system .71 .69 .70
JAMR (GitHub)2 .69 .58 .63
JAMR (Flanigan et al., 2014) .66 .52 .58
Stanford .66 .59 .62
SHRG-based .59 .58 .58
Wang et al. (2015) .64 .62 .63

Table 3: AMR parsing performance on the news
wire test set of LDC2013E117.

From Table 3 we can see that our parser has sig-
nificant improvement over all the other parsers and
outperforms the previous best parser by 7% points
in Smatch score.

4.2 Experiments on LDC2014T12

In this section, we conduct experiments on
the AMR annotation release 1.0 (LDC2014T12),
which contains 13,051 AMRs from newswire,
weblogs and web discussion forums. We use
the training/development/test split recommended
in the release: 10,312 sentences for training,
1,368 sentences for development and 1,371 sen-
tences for testing. We re-train the parser on the
LDC2014T12 training set with the best parser con-
figuration given in §4.1, and test the parser on the
test set. The result is shown in Table 4. For com-
parison purposes, we also include the results of the
updated version of JAMR and our baseline parser
in (Wang et al., 2015) which are also trained on
the same dataset. There is a significant drop-off
in performance compared with the results on the
LDC2013E117 test set for all the parsers, but our
parser outperforms the other parsers by a similar
margin on both test sets.

System P R F
Our system .70 .62 .66
Wang et al. (2015) .63 .56 .59
JAMR (GitHub) .64 .53 .58

Table 4: AMR parsing performance on the full test
set of LDC2014T12.

We also evaluate our parser on the newswire
section of LDC2014T12 dataset. Table 5 com-
pares the performance of JAMR, the Stanford
AMR parser and our system on the same dataset.

2This is the updated JAMR from
https://github.com/jflanigan/jamr

System P R F
Our system .72 .67 .70
Stanford .67 .58 .62
JAMR (GitHub) .67 .53 .59

Table 5: AMR parsing performance on newswire
section of LDC2014T12 test set

And our system still outperforms the other
parsers by a similar margin.

5 Conclusion

We presented extensions to a transition-based
AMR parser that leads to an improvement of 7%
in absolute F1 score over the best previously pub-
lished results. The extensions include designing a
new action to infer abstract concepts and training
the parser with additional semantic role labeling
and coreference based features.
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Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of the Conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing, HLT ’05, pages 523–530, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of LREC, vol-
ume 6, pages 2216–2219.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational linguistics,
31(1):71–106.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for AMR parsing. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James
Martin, and Dan Jurafsky. 2004. Shallow semantic
parsing using support vector machines. In Proceed-
ings of the Human Language Technology Confer-
ence/North American chapter of the Association of
Computational Linguistics (HLT/NAACL), Boston,
MA, May.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Pro-
ceedings of the Seventeenth Conference on Com-
putational Natural Language Learning, pages 143–
152, Sofia, Bulgaria, August.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics, pages 384–394. Association for
Computational Linguistics.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015. A transition-based algorithm for AMR pars-
ing. In North American Association for Computa-
tional Linguistics, Denver, Colorado.

Keenon Werling, Gabor Angeli, Melvin Johnson
Premkumar, and Christopher D. Manning. 2015.
Robust subgraph generation improves abstract
meaning representation parsing. In ACL.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation system
for free text. In Proceedings of the ACL 2010 System
Demonstrations, pages 78–83, Uppsala, Sweden.

862


