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Abstract

State legislatures often rely on existing
text when drafting new bills. Resource and
expertise constraints, which often drive
this copying behavior, can be taken ad-
vantage of by lobbyists and special inter-
est groups. These groups provide model
bills, which encode policy agendas, with
the intent that the models become actual
law. Unfortunately, model legislation is
often opaque to the public–both in source
and content. In this paper we present
LOBBYBACK, a system that reverse en-
gineers model legislation from observed
text. LOBBYBACK identifies clusters of
bills which have text reuse and gener-
ates “prototypes” that represent a canon-
ical version of the text shared between the
documents. We demonstrate that LOBBY-
BACK accurately reconstructs model leg-
islation and apply it to a dataset of over
550k bills.

1 Introduction

Beginning in 2005, a number of states began
passing “Stand Your Ground” laws–legal protec-
tions for the use of deadly force in self-defense.
Within a few years, at least two dozen states im-
plemented a version of the this legislation (Gar-
rett and Jansa, 2015). Though each state passed
its own variant, there is striking similarity in the
text of the legislation. While seemingly “viral”
the expedient adoption of these laws was not the
result of an organic diffusion process, but rather
more centralized efforts. An interest group, the
American Legislative Exchange Council (ALEC),
drafted model legislation (in this case modeled on
Florida’s law) and lobbied to have the model law
enacted in other states. While the influence of the

lobbyists through model laws grows, the hidden
nature of their original text (and source) creates a
troubling opacity.

Reconstructing such hidden text through analy-
sis of observed, potentially highly mutated, copies
poses an interesting and challenging NLP prob-
lem. We refer to this as the Dark Corpora prob-
lem. Since legislatures are not required to cite the
source of the text that goes into a drafted bill, the
bills that share text are unknown beforehand. The
first problem therein lies in identifying clusters of
bills with reused text. Once a cluster is identi-
fied, a second challenge is the reconstruction of
the original or prototype bill that corresponds to
the observed text. The usual circumstances under
which a model law is adopted by individual states
involves “mutation.” This may be as simple as
modifying parameters to the existing policy (e.g.,
changing the legal limit allowed of medical mar-
ijuana possession to 3.0 ounces from 2.5) or can
be more substantial, with significant additions or
deletions of different conditions of a policy. Inter-
estingly, the need to maintain the objectives of the
law creates a pressure to retain a legally meaning-
ful structure and precise language–thus changes
need to satisfy the existing laws of the state but
carry out the intent of the model. Both subtle
changes of this type, and more dramatic ones, are
of great interest to political scientists. A specific
application, for example, may be predicting likely
spots for future modifications as additional states
adopt the law. Our challenge is to identify and rep-
resent “prototype” sentences that capture the sim-
ilarity of observed sentences while also capturing
the variation.

In this paper we propose LOBBYBACK, a sys-
tem that automatically identifies clusters of docu-
ments that exhibit text reuse, and generates “pro-
totypes” that represent a canonical version of text
shared between the documents. In order to syn-
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thesize the prototypes, LOBBYBACK first extracts
clusters of sentences, where each sentence per-
tains to the same policy but can exhibit variation.
LOBBYBACK then uses a greedy multi-sequence
alignment algorithm to identify an approximation
of the optimal alignment between the sentences.
Prototype sentences are synthesized by comput-
ing a consensus sentence from the multi-sentence
alignment. As sentence variants are critical in un-
derstanding the effect of the model legislation, we
can not simply generate a single “common” sum-
mary sentence as a prototype. Rather, LOBBY-
BACK creates a data structure that captures this
variability in text for display to the end-user.

With LOBBYBACK, end-users can quickly
identify clusters of text reuse to better understand
what type of policies are diffused across states.
In other applications, sentence prototypes can be
used by journalists and researchers to discover
previously unknown model legislation and the in-
volvement of lobbying organizations. For exam-
ple, prototype text can be compared to the lan-
guage or policy content of interest groups docu-
ments and accompanied with qualitative research
it can help discover which lobbyists have drafted
this legislation.

We evaluated LOBBYBACK on the task of re-
constructing 122 known model legislation docu-
ments. Our system was able to achieve an aver-
age of 0.6 F1 score based on the number of pro-
totype sentences that had high similarity with sen-
tences from the model legislation. We have also
run LOBBYBACK on the entire corpus of state leg-
islation (571,000 documents) from openstates.org
as an open task. The system identified 4,446 clus-
ters for which we generated prototype documents.
We have released the resulting data set and code
at http://github.com/mattburg/LobbyBack. LOB-
BYBACK is novel in fully automating and scal-
ing the pipeline of model-legislation reconstruc-
tion. The output of this pipeline captures both the
likely “source sentences” but also the variations of
those sentences.

2 Related Work

While no specific system or technique has fo-
cused on the problem of legislative document re-
construction, we find related work in a number of
domains. Multi-document summarization (MDS),
for example, can be used to partially model the un-
derlying problem–generating a representative doc-

ument from multiple sources. Extractive MDS, in
particular, is promising in that representative sen-
tences are identified.

Early work in extractive summarization include
greedy approaches such as that proposed by Car-
bonell and Goldstein (1998). The algorithm uses
an objective function which trades off between rel-
evance and redundancy. Global optimization tech-
niques attempt to generate “summaries” (selected
sets of sentences or utterances) that maximize an
objective based on informativeness, redundancy
and/or length of summary. These have shown su-
perior performance to greedy algorithms (Yih et
al., 2007; Gillick et al., 2009). Approaches based
on neural networks have recently been proposed
for ranking candidate sentences (Cao et al., 2015).
Graph based methods, such as LexRank (Erkan
and Radev, 2004), have also proven effective for
MDS. Extensions to this approach combine sen-
tence ranking with clustering in order to minimize
redundancy (Qazvinian and Radev, 2008; Wan and
Yang, 2008; Cai and Li, 2013). The C-LexRank
algorithm (Qazvinian and Radev, 2008), in par-
ticular, uses this combination and inspired our
high level design. Similar to our approach, Wang
and Cardie (2013) propose a method for generat-
ing templates of meeting summaries using multi-
sequence alignment.

Though related, it is important to note that the
objectives of summarization (informativeness, re-
duced redundancy, etc.) are not entirely consistent
with our task. For example, using the n-gram co-
occurrence based ROUGE score would not be suf-
ficient at evaluating LOBBYBACK. Our goal is to
accurately reconstruct entire sentences of a hidden
document given observed mutations of that docu-
ment. Additionally, our goal is not simply to find
a representative sentence that reflects the original
document, but to capture the similarity and vari-
ability of the text within a given “sentence cluster.”

Within the political science and legal studies
communities research has focused on manual ap-
proaches to both understanding how model legis-
lation impacts law and how policy ideas diffuse
between bill text. As these studies are time con-
suming, there is no large-scale or broad analysis of
legislative materials. Rather, researchers have lim-
ited their workload by focusing on a single topic
(e.g., abortion (Patton, 2003) and crime (Kent and
Carmichael, 2015)) or a single lobbying group
(e.g., ALEC (Jackman, 2013). Similarly, those
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studying policy diffusion across US states have
also limited their analysis to a few topics (e.g.,
same-sex marriage (Haider-Markel, 2001)).

Recent attempts to automate the analysis of
model legislation has had similar problems, as
most researchers have limited their analysis to one
interest group or a few relevant topics (Hertel-
Fernandez and Kashin, 2015; Jansa et al., 2015).
Hertel-Fernandez and Kashin proposed a super-
vised model in which they train on hand labeled
examples of state bills that borrow text and/or con-
cepts from ALEC bills. The problem they focus
on is different from ours. The motivation behind
LOBBYBACK is that there exists many model leg-
islation which we don’t have access to and the goal
is to try and reconstruct these documents with-
out labeled training data. Jansa et al. propose a
technique for inferring a network of policy diffu-
sion for manually labeled clusters of bills. Both
Jansa et al. and Hertel-Fernandaz and Kashin pro-
pose techniques that only look at the problem of
inferring whether two bills exhibit text reuse but
unlike LOBBYBACK they do not attempt to infer
whether specific policies (sentences) in the docu-
ments are similar/different.

A related “dark corpora” problem, though at a
far smaller scale, is the biblical “Q source” where
hidden oral sources are reconstructed through tex-
tual analysis (Mournet, 2005).

3 Problem Definition

Policy diffusion is a common phenomenon in
state bills (Gray, 1973; Shipan and Volden, 2008;
Berry and Berry, 1990; Haider-Markel, 2001).
Unlike members of the (Federal) Congress, few
state legislators have the expertise, time, and staff
to draft legislation. It is far easier for a legisla-
tor to adapt existing legislative text than to write
a bill from scratch. As a consequence, state leg-
islatures have an increased willingness to adopt
legislation drafted by interest groups or by legis-
lators in other states (Jansa et al., 2015). In addi-
tion to states borrowing text from other legislators
and lobbyists, another reason why bills can exhibit
text reuse is when a new federal law passes and
each state needs to modify its existing policy to
conform with the new federal law.

The result of legislative copying, whether
caused by diffusion between states, influence from
a lobby or the passing of a new federal law, is sim-
ilar: a cluster of bills will share very similar text,
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Figure 1: Visualization of a multi-sentence align-
ment (fragment) and resulting prototype sentence.

often varying only by implementation details of a
given policy. The goal in constructing a prototype
document–a representation of the “original” text–
is to synthesize this document from the modified
copies. In the case when the bill cluster was in-
fluenced by one external source, such as lobby or
passage of a federal bill, the ideal prototype doc-
ument would capture the language that each bill
borrowed from the source document. In the case
when their is not one single document that influ-
enced a cluster of bills, the prototype will still give
a summary of a concise description of the diffused
text between bills, providing fast insight into what
text was shared and changed within a bill cluster.

3.1 State Legislation Corpus

We obtained the entire openstates.org corpus of
state legislation, which includes 550,000 bills and
200,000 resolutions for all 50 states. While for
some states this corpus includes data since 2007,
for the majority of states we have data from 2010
on. We do not include data from Puerto Rico,
where the text is in Spanish, and from Washing-
ton DC, which includes many idiosyncrasies (e.g.,
correspondence from city commissions introduced
as bills). On average, each state introduced 10,524
bills, with an average length of 1205 words.

4 LOBBYBACK Architecture

LOBBYBACK consists of 3 major components.
The first component identifies clusters of bills that
have text reuse. Then for each of these bill clus-
ters, LOBBYBACK extracts and clusters the sen-
tences from all documents. For each of the sen-
tence clusters, LOBBYBACK synthesizes proto-
type sentences in order to capture the similarity
and variability of the sentences in the cluster.
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4.1 Clustering Bills
Groups of bills with significant text reuse repre-

sent candidates for analysis as they have may have
all copied from the same model legislation. There
are a number of ways one could identify such clus-
ters through text mining. In our implementation,
we have opted to generate a network representa-
tion of the bills and then use a network cluster-
ing (i.e., “community-finding”) algorithm to gen-
erate the bill clusters. In our network representa-
tion each node represents a state bill and weighted
edges represent the degree to which two bills ex-
hibit substantive text reuse. Since most pairs of
bills do not have text reuse, we chose to use a
network model because community finding algo-
rithms work well on sparse data and do not require
any parameter choice for the number of clusters.
In the context of this paper, text reuse occurs when
two state bills share:

1. Long passages of text, e.g. (sections of bills)
that can differ in details.

2. These passages contain text of substantive
nature to the topic of the bill (i.e., text that
is not boilerplate).

In addition to text that describes policy, state
bills also contain boilerplate text that is common
to all bills from a particular state or to a particu-
lar topic. Examples of legislative boilerplate in-
clude: “Read first time 01/29/16. Referred to
Committee on Higher Education” (meta-data de-
scribing where the bill is in the legislative pro-
cess); and “Safety clause. The general assembly
hereby finds, determines, and declares . . . ” (a
standard clause included in nearly all legislation
from Colorado, stating the eligibility of a bill to
be petitioned with a referendum).

In order to identify pairs of bills that exhibit text
reuse, we created an inverted index that contained
n-grams ranging from size 4-8. We use Elastic-
Search to implement the inverted index and com-
puted the similarity between bills using the “More
like This” (MLT) query (Elastic, 2016). The MLT
query first selects the 100 highest scoring TF*IDF
n-grams from a given document and uses those
to form a search query. The MLT query is able
to quickly compute the similarity between docu-
ments and since it ranks the query terms by using
TF*IDF the query text is more likely to be sub-
stantive rather then boilerplate. The MLT query
we used was configured to only return documents

that matched at least 50% of the query’s shingles
and returned at most 100 documents per query.
By implementing the similarity search using a
TF*IDF cutoff we were able to scale the similar-
ity computation while still maintaining our desire
to identify reuse of substantive text.

The edges of the bill similarity network are
computed by calculating pairwise similarity. Each
bill is submitted as input for an MLT query and
scored matches are returned by the search engine.
Since the MLT query extracts n-grams only for
the query document, the similarity function be-
tween two documents di and dj is not symmet-
ric. We construct a symmetric bill similarity net-
work by taking the average score of each (di, dj)
and its reciprocal (dj , di). A non-existent edge
is represented as an edge with score 0. We fur-
ther reduce the occurrence of false-positive edges
by removing all edges with a score lower than
0.1. The resulting network is very sparse, consist-
ing of 35,346 bills that have 1 or more neighbors,
125,401 edges, and 3534 connected components
that contain an average of 10 bills.

A specific connected component may contain
more than one bill cluster. To isolate these clusters
in the bill network we use the InfoMap commu-
nity detection algorithm (Rosvall and Bergstrom,
2008). We use the InfoMap algorithm because it
has been to shown to be one of the best commu-
nity detection algorithms and it is able to detect
clusters at a finer granularity than other methods.
Our corpus contains both bills that have passed
and those that have not. Bills can often be re-
introduced in their entirety after failing the previ-
ous year. As we do not want to bias the clusters
towards bills that are re-introduced more than oth-
ers, we filter the clusters such that they only in-
clude the earliest bill from each state.

4.2 Prototype Synthesis

Once we have identified a cluster of bills that
have likely emerged from a single “source” we
would like to construct a plausible representation
of that source. The prototype synthesizer achieves
this by constructing a canonical document that
captures the similarity and variability of the con-
tent in a given bill cluster. The two main steps in
prototype synthesis consists of clustering bill sen-
tences and generating prototype sentences from
the clusters.
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Figure 2: An sample state bill segment from
Michigan Senate Bill 571

4.2.1 Sentence Clustering
Most state bills have a common structure, con-

sisting of an introduction that describes the intent
of the bill followed by sections that contain the
law to be implemented. Each section of a bill is
comprised of self-contained policy, usually con-
sisting of a long sentence that describes the pol-
icy and the implementation details of that policy.
Each document is segmented into these policy sen-
tences using the standard Python NLTK sentence
extractor. Sentences are cleaned by removing spu-
rious white space characters, surrounding punctu-
ation and lower-casing each word. Once we have
extracted all of the sentences for a given bill clus-
ter, we compute the cosine similarity between all
pairs of sentences which are represented using a
unigram bag-of-words model. We used a simple
unweighted bag of words model because in le-
gal text stop words can be import1 In this case,
we are generating a similarity “matrix” capturing
sentence–sentence similarity.

Given the similarity matrix, our next goal is
to isolate clusters of variant sentences that likely
came from the same source sentence. We elected
to use the DBSCAN (Ester et al., 1996) algorithm
to generate these clusters. The DBSCAN algo-
rithm provides us with tunable parameters that can
isolate better clusters. Specifically, the parameter
ε controls the maximum distance between any two
points in the same neighborhood. By varying ε
we are able to control both the number of clus-
ters and the amount of sentence variation within a
cluster. A second reason for selecting DBSCAN is
that the algorithm automatically deals with noisy
data points, placing all points that are not close
enough to other points in a separate cluster labeled

1The difference between the words ”shall” and ”may” for
instance is important, the former requires that a specific ac-
tion be put on a states budget while the later does not

“noise.” Since many sentences in a given bill clus-
ter do not contribute to the reused text between
bills, the noise cluster is useful for grouping those
sentences together rather than having them be out-
siders in “good” clusters.

4.2.2 Multi-Sequence Alignment
Once we have sentence clusters we then syn-

thesize a “prototype” sentence from all of the sen-
tences in a given cluster. An ideal prototype “sen-
tence” is one that simultaneously captures the sim-
ilarity between each sentence in the cluster (the
common sentence structures) and the variation be-
tween the sentences in a cluster. For a simple pair
of (partial) sentences, “The Department of Motor
Vehicles retains the right to . . . ” and “The Depart-
ment of Transportation retains the right to . . . ”, a
prototype might be of the form, “The Department
of { Motor Vehicles, Transportation } retains the
rights to . . . ” Our “sentence” is not strictly a sin-
gle linear piece of text. Rather, we have a data
structure that describes alternative sub-strings and
captures variant text.

To generate this structure we propose an algo-
rithm that computes an approximation of the opti-
mal multi-sentence alignment (MSA) in the clus-
ter and then generates a prototype sentence repre-
senting a ‘consensus’ for sentences in the MSA.

We generate an MSA using a modified version
of the iterative pairwise alignment algorithm de-
scribed in (Gusfield, 1997). The greedy algorithm
builds a multi-alignment by iteratively applying
the Needleman-Wunsch pairwise global alignment
algorithm. Needleman-Wunsch computes the op-
timal pairwise alignment by maximizing the align-
ment score between two sentences. An align-
ment score is calculated based on three param-
eters: word matches, word mismatches (when a
word appears in one sentence but not the other),
and gaps (when the algorithm inserts a space in
one of the sentences).

An MSA is generated by the following steps:

1. Construct an edit-distance matrix for all pairs
of sentences

2. Construct an initial alignment between the
two sentences with the smallest edit distance

3. Repeat this step k times:
(a) Select the sentence with the smallest av-

erage edit distance to the current MSA.
(b) Add the chosen sentence to the MSA by

aligning it to the existing MSA.
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The algorithm stops after the alignment has
reached a size that is determined as a free param-
eter k (user configured, but can be chosen to be
the number of sentences in the cluster). As the al-
gorithm execution is ordered on the edit distance
between the current MSA and the next sentence to
be added, the larger the MSA, the more variation
we are allowing in the prototype sentence.

4.2.3 Synthesizing Prototype Sentences
We synthesize a prototype sentence by finding

a consensus sentence from all of the aligned sen-
tences in the MSA for a given cluster. We achieve
this by going through each “column” of the MSA
and using the following rules to decide which to-
ken will be used in the prototype. A token can be
either a word in one of the sentences or a “space”
that was inserted during the alignment process.

1. If there is a token that occurs in the major-
ity of alignments (> 50%) then that token is
chosen.

2. If no token appears in a majority, then a spe-
cial variable token is constructed that dis-
plays all of the possible tokens in each sen-
tence. For example the 1st and 3rd columns
in Figure 1.

3. If a space is the majority token chosen then it
is shown as a variable token with the second
most common token.

5 Evaluation

We provide experiments that evaluate all three
components of LOBBYBACK.

5.1 Model Legislation Corpus
To test the effectiveness of LOBBYBACK in

recreating a model bill, we first identified a set
of known model bills. Our model legislation cor-
pus consists of 1846 model bills that we found by
searching on Google using the keywords “model
law”, “model policy” and “model legislation.”
Most of the corpus is comprised of bills from
the conservative lobby group, American Legisla-
tive Exchange Council (ALEC, 708 documents),
its liberal counterpart, the State Innovative Ex-
change (SIX, 269 documents) and the non-partisan
Council of State Governments (CSG, 470 docu-
ments), and the remainder (399) from smaller in-
terest groups that focus on specific issues.

Using the clusters we previously described
(Section 4.1), we found the most similar cluster to

each model bill. This was done by first computing
the set of neighbors (ego-network) for a model bill
using the same procedure used in creating the bill
similarity network. We then matched a bill cluster
to the model legislation by finding the bill clus-
ter that had the highest Jaccard similarity (based
on the overlapping bills in each cluster) with the
neighbor set of a model bill. Each test example in
our evaluation data set consists of model bill and
its corresponding bill cluster. The total number of
model legislation documents that had matches in
the state bill corpus was 360 documents.

Once we have an evaluation data set comprised
of model bill/cluster pairs our goal is to compare
the prototype sentences we infer for a cluster to
the model bill that matches that cluster. Since we
do not have ground truth on which sentences from
the model bill match sentences in the documents
that comprise the cluster we need to infer such la-
bels. In order to identify which sentences from the
model legislation actually get re-used in the bill
cluster, we take the following steps:

1. Extract all sentences from each of the bills in
a cluster and the sentences in the correspond-
ing model legislation.

2. Compute the pairwise cosine similarity be-
tween bill sentences and each of the model
bill sentences using the same unigram bag-
of-words model described in Section 4.2.1

3. Compute the “oracle” matchingM∗ using the
Munkres algorithm (Munkres, 1957)

The Munkres algorithm gives the best possible
one-to-one matching between the sentences in the
model legislation and the sentences in the bill clus-
ters. There are some sentences in the model bill
that are never used in actual state legislation (e.g.,
sentences that describe the intent of a law or in-
structions of how to implement a model policy).
Therefore we label model bill sentences in M∗

that match a bill sentence with a score greater than
0.85 as true matches (S∗)2. The final set of 122
evaluation examples consists of all model legis-
lation/bill cluster pairs where more than 50% of
model bill sentences have true matches.

2A threshold of 0.85 was found effective in prior
work (Garrett and Jansa, 2015) and we observed good sep-
aration between matching sentences and non-matches in our
data-set.
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Figure 3: Precision, Recall, and F1 scores for the bill clustering component of LOBBYBACK configured
with both the Louvain and InfoMap clustering algorithms.

5.2 Baselines

While no specific baseline exists for our prob-
lem, we implemented two alternatives to test
against. The first, Random-Baseline, was imple-
mented simply to show the performance of ran-
domly constructing prototype documents. The
second, LexRank-Baseline, implements a popular
extractive summarization method.
Random-Baseline – The random-baseline randomly
samples sentences from a given bill cluster. The
number of sentences it samples is equal to the
number of sentences in the optimal matching |M∗|
LexRank-Baseline – The LexRank baseline uses
the exact same clustering algorithm as LOBBY-
BACK except instead of synthesizing prototype
sentences, it uses the LexRank algorithm (Erkan
and Radev, 2004) to pick the most salient sentence
from each of the sentence clusters.

5.3 Evaluating Bill Clusters

As described in Section 5.1, each model bill
is associated with a set of bills that comprise its
neighbors in the bill network. In order to evaluate
how LOBBYBACK clusters bills we compare the
inferred clusters to the corresponding neighbor set
for each model bill.

The inferred cluster for a given model bill can
exhibit false positive and false negative errors.
False negatives, in which a bill that exists in the
neighbor set of a model bill but is not contained
in the inferred cluster, are easy to identify (allow-
ing us to calculate recall). Precision, on the other
hand, is more difficult as any “extra” bills in the
inferred cluster are not necessarily incorrect. It is
possible that there are bills which do exhibit text
re-use with the model legislation but did not match
via the ElasticSearch query used to construct the
network. We have found that in practice the sec-

ond component of LOBBYBACK, which clusters
the sentences extracted from a bill cluster, is robust
to false-positives due to DBSCAN’s treatment of
“noisy” data points. Because of this, we are more
concerned with recall in the bill clustering module
as any data lost in this step propagates through the
rest of the system.

Figure 3 shows the precision, recall, and F1
scores for LOBBYBACK coupled with both the
Louvain (Blondel et al., 2008) and InfoMap (Ros-
vall and Bergstrom, 2008) network clustering al-
gorithms. Because we do not know with abso-
lute certainty which state bills are derived from
model legislation, we would like to test our ap-
proach at different levels of confidence. To do
this we vary the threshold on the similarity scores
(edge weights) of the ego-network determined for
each model legislation. A normalized weight is
computed by taking the score provided by Elas-
ticSearch and dividing that edge weight weight
by the maximum edge weight in the neighbor set
(to control for the unbounded scores provided by
ElasticSearch). We vary the threshold for this
weight (ranging from 0 to 1) and calculate the pre-
cision, recall, and F1 on a neighborhood set that
is comprised of all bills that have a weight greater
than the threshold. Higher threshold values means
fewer state bills are included in the set, but they
are increasingly similar to the model bill.

As shown in Figure 3, recall stays high for the
majority of threshold values. This indicates that
both clustering algorithms do a good job at re-
covering the bills that are the most similar to the
model legislation. However, the two clustering al-
gorithms differ somewhat in precision. Louvain,
in particular performs worse, as it suffer from “res-
olution” problems. While effective for networks
with large clusters, Louvain can not isolate small
groups, of which we have many. For this reason,
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Figure 4: Precision, Recall, and F1 scores of LOBBYBACK and baselines.

we chose InfoMap as the method to use for the fi-
nal implementation of LOBBYBACK.

5.4 Evaluating Sentence Clusters
We first evaluate the quality of the sentence

clusters using the optimal matching M∗ described
above. For each test example in the evaluation set
we generate a prototype document using LOBBY-
BACK and each of the baselines described above.
We then compute a matching M between the pro-
totype sentences and the model bill sentences (us-
ing the same procedure described in 5.1), where S
is the set of sentences in the prototype and S0.85

is the set of sentences that match with a score
greater than 0.85. We compute precision, P , as
P = |S0.85|/|S|, and recall, R, as R = |S|/|S∗|.

Figure 4 shows precision, recall and F1 scores
for both baselines and LOBBYBACK. Each curve
is generated by averaging the precision/recall/F1
scores computed for each of the examples in the
test set. The x-axis represents the minimum bill
cluster size of the test examples for which the
score is computed. For example, a minimum clus-
ter size would average over all test examples with
at least 2 bills in a cluster. LOBBYBACK re-
lies on the fact that if text was borrowed from a
model bill, then it would have been borrowed by
many of the bills in the cluster. By analyzing how
LOBBYBACK performs with respect to the min-
imum cluster size, we can determine how much
evidence LOBBYBACK needs in order to construct
clusters that correspond to sentences in the model
bills. While the performance of LOBBYBACK and
the LexRank baseline substantially improves over
the random baseline, the different between LOB-
BYBACK and LexRank for this task is negligi-
ble. Since our cut-off similarity is 0.85, all sen-
tences above the threshold are treated as true posi-
tives, making the distinction between the LexRank
baseline and system small. LOBBYBACK per-

forms a little worse than LexRank for large cluster
sizes because it is penalized for having space and
variable tokens which don’t occur in model bills.
Space and variable tokens occur more frequently
in prototype sentences in larger clusters because
there is more variation in the sentence clusters.

5.5 Evaluating Sentence Synthesis
The experiment in the previous section evalu-

ated the quality of the sentence clusters by treat-
ing all matching sentences with a similarity greater
than 0.85 as true positives. Here we provide
an evaluation of the synthesized sentences that
LOBBYBACK generates and compare them to the
LexRank baseline, which chooses the most salient
sentence from each cluster. We evaluate the qual-
ity of the synthesized prototype sentences by com-
puting the word-based edit-distance between the
prototype sentence with its corresponding model
bill sentence in S for each test example.

Since the prototypes contain variable and space
tokens which do not occur in the model bill sen-
tences we modify the standard edit distance algo-
rithm by not penalizing space tokens and allow-
ing for any of the tokens that comprise a variable
to be positive matches. In addition, we remove
punctuation and lowercase all words in all of the
sentences, regardless of method. We generate the
results in Table 1 by averaging the edit distance
for a configuration of LOBBYBACK or LexRank
over sentence clusters produced for each test ex-
ample. LOBBYBACK was configured to run with
the number of iterations set to the size of the sen-
tence cluster.

We compared both the performance of LOBBY-
BACK and LexRank for DBSCAN ε values of 0.1
and 0.15 as well as computing the average edit dis-
tance for different minimum sizes of cluster val-
ues. As the table shows, LOBBYBACK obtains a
lower edit distance than LexRank in every config-
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uration and as the size of the clusters increase the
gap between the two increases. The goal of LOB-
BYBACK is not to be a better summarization algo-
rithm than LexRank. By comparing to LexRank
and showing that the edit distances are smaller on
average, we can conclude that the prototype sen-
tences created by LOBBYBACK are capturing the
text that is “central” or similar within a given clus-
ter. In addition, the prototype sentences produced
by LOBBYBACK are superior because they also
capture and describe in a succinct way, the vari-
ability of the sentences within a cluster.

6 Discussion

One assumption that we made about the nature
of state adoption of model legislation is that the
legislatures make modifications that largely pre-
serve the model language in an effort to preserve
policy. However, we currently do not consider
cases in which a legislature has intentionally ob-
scured the text while still retaining the same mean-
ing. While not as frequent as common text reuse,
Hertel-Fernandez and Kashin (2015) observed that
some legislatures almost completely changed the
text while reusing the concepts. One area of future
work would be to try and extend LOBBYBACK to
be more robust to these cases. One strategy would
be to allow for a more flexible representation of
text, such as word vector embeddings. The em-
beddings might even be used to extend the multi-
sentence alignment to include a penalty based on
word distance in embedding space.

LOBBYBACK performs well on reconstructing
model legislation from automatically generated
bill clusters. However, there are a number of im-
provements that can refine part of the pipeline. A
potential change, but one that is more computa-
tionally costly, would be to use a deeper parsing of
the sentences that we extract from the documents.
We used a simple unigram model when comput-
ing sentence similarities because we wanted to en-
sure that stop words were included–due to their
importance in legal text. We suspect that by using
a parser we could, for example, weight the sim-
ilarity of noun-phrases, yielding a better similar-
ity matrix and potentially higher precision/recall.
Currently LOBBYBACK does not consider the or-
der of the sentences when attempting to construct
a prototype document. We envision a future ver-
sion of LOBBYBACK that tries to reconstruct the
original ordering of the prototype sentences.

Min Cluster Size
Method ε 2 4 6 8
LOBBYBACK 0.1 24.4 20.4 18.2 17.2
LexRank 0.1 25.4 22.5 20.3 19.4
LOBBYBACK 0.15 25.5 21.6 19.4 17.9
LexRank 0.15 27.3 25.6 25.0 24.1

Table 1: Mean edit distance scores for LOBBY-
BACK and LexRank.

7 Conclusion

In this paper we present LOBBYBACK, a system
to reconstruct the “dark corpora” that is comprised
of model bills which are copied (and modified)
by resource constrained state legislatures. LOB-
BYBACK first identifies clusters of text reuse in a
large corpora of state legislation and then gener-
ates prototype sentences that summarizes the sim-
ilarity and variation of the copied text in a bill
cluster. We believe that by open-sourcing LOB-
BYBACK and releasing our data of prototype bills
to the public, journalists and legal scholars can use
our findings to better understand the origination of
U.S state laws.
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