@inproceedings{eger-etal-2017-neural,
title = "Neural End-to-End Learning for Computational Argumentation Mining",
author = "Eger, Steffen and
Daxenberger, Johannes and
Gurevych, Iryna",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1002/",
doi = "10.18653/v1/P17-1002",
pages = "11--22",
abstract = "We investigate neural techniques for end-to-end computational argumentation mining (AM). We frame AM both as a token-based dependency parsing and as a token-based sequence tagging problem, including a multi-task learning setup. Contrary to models that operate on the argument component level, we find that framing AM as dependency parsing leads to subpar performance results. In contrast, less complex (local) tagging models based on BiLSTMs perform robustly across classification scenarios, being able to catch long-range dependencies inherent to the AM problem. Moreover, we find that jointly learning {\textquoteleft}natural' subtasks, in a multi-task learning setup, improves performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="eger-etal-2017-neural">
<titleInfo>
<title>Neural End-to-End Learning for Computational Argumentation Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Steffen</namePart>
<namePart type="family">Eger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Daxenberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate neural techniques for end-to-end computational argumentation mining (AM). We frame AM both as a token-based dependency parsing and as a token-based sequence tagging problem, including a multi-task learning setup. Contrary to models that operate on the argument component level, we find that framing AM as dependency parsing leads to subpar performance results. In contrast, less complex (local) tagging models based on BiLSTMs perform robustly across classification scenarios, being able to catch long-range dependencies inherent to the AM problem. Moreover, we find that jointly learning ‘natural’ subtasks, in a multi-task learning setup, improves performance.</abstract>
<identifier type="citekey">eger-etal-2017-neural</identifier>
<identifier type="doi">10.18653/v1/P17-1002</identifier>
<location>
<url>https://aclanthology.org/P17-1002/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>11</start>
<end>22</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural End-to-End Learning for Computational Argumentation Mining
%A Eger, Steffen
%A Daxenberger, Johannes
%A Gurevych, Iryna
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F eger-etal-2017-neural
%X We investigate neural techniques for end-to-end computational argumentation mining (AM). We frame AM both as a token-based dependency parsing and as a token-based sequence tagging problem, including a multi-task learning setup. Contrary to models that operate on the argument component level, we find that framing AM as dependency parsing leads to subpar performance results. In contrast, less complex (local) tagging models based on BiLSTMs perform robustly across classification scenarios, being able to catch long-range dependencies inherent to the AM problem. Moreover, we find that jointly learning ‘natural’ subtasks, in a multi-task learning setup, improves performance.
%R 10.18653/v1/P17-1002
%U https://aclanthology.org/P17-1002/
%U https://doi.org/10.18653/v1/P17-1002
%P 11-22
Markdown (Informal)
[Neural End-to-End Learning for Computational Argumentation Mining](https://aclanthology.org/P17-1002/) (Eger et al., ACL 2017)
ACL