@inproceedings{konstas-etal-2017-neural,
title = "Neural {AMR}: Sequence-to-Sequence Models for Parsing and Generation",
author = "Konstas, Ioannis and
Iyer, Srinivasan and
Yatskar, Mark and
Choi, Yejin and
Zettlemoyer, Luke",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1014/",
doi = "10.18653/v1/P17-1014",
pages = "146--157",
abstract = "Sequence-to-sequence models have shown strong performance across a broad range of applications. However, their application to parsing and generating text using Abstract Meaning Representation (AMR) has been limited, due to the relatively limited amount of labeled data and the non-sequential nature of the AMR graphs. We present a novel training procedure that can lift this limitation using millions of unlabeled sentences and careful preprocessing of the AMR graphs. For AMR parsing, our model achieves competitive results of 62.1 SMATCH, the current best score reported without significant use of external semantic resources. For AMR generation, our model establishes a new state-of-the-art performance of BLEU 33.8. We present extensive ablative and qualitative analysis including strong evidence that sequence-based AMR models are robust against ordering variations of graph-to-sequence conversions."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="konstas-etal-2017-neural">
<titleInfo>
<title>Neural AMR: Sequence-to-Sequence Models for Parsing and Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ioannis</namePart>
<namePart type="family">Konstas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Srinivasan</namePart>
<namePart type="family">Iyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Yatskar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yejin</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sequence-to-sequence models have shown strong performance across a broad range of applications. However, their application to parsing and generating text using Abstract Meaning Representation (AMR) has been limited, due to the relatively limited amount of labeled data and the non-sequential nature of the AMR graphs. We present a novel training procedure that can lift this limitation using millions of unlabeled sentences and careful preprocessing of the AMR graphs. For AMR parsing, our model achieves competitive results of 62.1 SMATCH, the current best score reported without significant use of external semantic resources. For AMR generation, our model establishes a new state-of-the-art performance of BLEU 33.8. We present extensive ablative and qualitative analysis including strong evidence that sequence-based AMR models are robust against ordering variations of graph-to-sequence conversions.</abstract>
<identifier type="citekey">konstas-etal-2017-neural</identifier>
<identifier type="doi">10.18653/v1/P17-1014</identifier>
<location>
<url>https://aclanthology.org/P17-1014/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>146</start>
<end>157</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural AMR: Sequence-to-Sequence Models for Parsing and Generation
%A Konstas, Ioannis
%A Iyer, Srinivasan
%A Yatskar, Mark
%A Choi, Yejin
%A Zettlemoyer, Luke
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F konstas-etal-2017-neural
%X Sequence-to-sequence models have shown strong performance across a broad range of applications. However, their application to parsing and generating text using Abstract Meaning Representation (AMR) has been limited, due to the relatively limited amount of labeled data and the non-sequential nature of the AMR graphs. We present a novel training procedure that can lift this limitation using millions of unlabeled sentences and careful preprocessing of the AMR graphs. For AMR parsing, our model achieves competitive results of 62.1 SMATCH, the current best score reported without significant use of external semantic resources. For AMR generation, our model establishes a new state-of-the-art performance of BLEU 33.8. We present extensive ablative and qualitative analysis including strong evidence that sequence-based AMR models are robust against ordering variations of graph-to-sequence conversions.
%R 10.18653/v1/P17-1014
%U https://aclanthology.org/P17-1014/
%U https://doi.org/10.18653/v1/P17-1014
%P 146-157
Markdown (Informal)
[Neural AMR: Sequence-to-Sequence Models for Parsing and Generation](https://aclanthology.org/P17-1014/) (Konstas et al., ACL 2017)
ACL
- Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi, and Luke Zettlemoyer. 2017. Neural AMR: Sequence-to-Sequence Models for Parsing and Generation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 146–157, Vancouver, Canada. Association for Computational Linguistics.