@inproceedings{foland-martin-2017-abstract,
title = "{A}bstract {M}eaning {R}epresentation Parsing using {LSTM} Recurrent Neural Networks",
author = "Foland, William and
Martin, James H.",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1043/",
doi = "10.18653/v1/P17-1043",
pages = "463--472",
abstract = "We present a system which parses sentences into Abstract Meaning Representations, improving state-of-the-art results for this task by more than 5{\%}. AMR graphs represent semantic content using linguistic properties such as semantic roles, coreference, negation, and more. The AMR parser does not rely on a syntactic pre-parse, or heavily engineered features, and uses five recurrent neural networks as the key architectural components for inferring AMR graphs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="foland-martin-2017-abstract">
<titleInfo>
<title>Abstract Meaning Representation Parsing using LSTM Recurrent Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Foland</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="given">H</namePart>
<namePart type="family">Martin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a system which parses sentences into Abstract Meaning Representations, improving state-of-the-art results for this task by more than 5%. AMR graphs represent semantic content using linguistic properties such as semantic roles, coreference, negation, and more. The AMR parser does not rely on a syntactic pre-parse, or heavily engineered features, and uses five recurrent neural networks as the key architectural components for inferring AMR graphs.</abstract>
<identifier type="citekey">foland-martin-2017-abstract</identifier>
<identifier type="doi">10.18653/v1/P17-1043</identifier>
<location>
<url>https://aclanthology.org/P17-1043/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>463</start>
<end>472</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Abstract Meaning Representation Parsing using LSTM Recurrent Neural Networks
%A Foland, William
%A Martin, James H.
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F foland-martin-2017-abstract
%X We present a system which parses sentences into Abstract Meaning Representations, improving state-of-the-art results for this task by more than 5%. AMR graphs represent semantic content using linguistic properties such as semantic roles, coreference, negation, and more. The AMR parser does not rely on a syntactic pre-parse, or heavily engineered features, and uses five recurrent neural networks as the key architectural components for inferring AMR graphs.
%R 10.18653/v1/P17-1043
%U https://aclanthology.org/P17-1043/
%U https://doi.org/10.18653/v1/P17-1043
%P 463-472
Markdown (Informal)
[Abstract Meaning Representation Parsing using LSTM Recurrent Neural Networks](https://aclanthology.org/P17-1043/) (Foland & Martin, ACL 2017)
ACL