@inproceedings{harwath-glass-2017-learning,
title = "Learning Word-Like Units from Joint Audio-Visual Analysis",
author = "Harwath, David and
Glass, James",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-1047/",
doi = "10.18653/v1/P17-1047",
pages = "506--517",
abstract = "Given a collection of images and spoken audio captions, we present a method for discovering word-like acoustic units in the continuous speech signal and grounding them to semantically relevant image regions. For example, our model is able to detect spoken instances of the word {\textquoteleft}lighthouse' within an utterance and associate them with image regions containing lighthouses. We do not use any form of conventional automatic speech recognition, nor do we use any text transcriptions or conventional linguistic annotations. Our model effectively implements a form of spoken language acquisition, in which the computer learns not only to recognize word categories by sound, but also to enrich the words it learns with semantics by grounding them in images."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="harwath-glass-2017-learning">
<titleInfo>
<title>Learning Word-Like Units from Joint Audio-Visual Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Harwath</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Glass</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Given a collection of images and spoken audio captions, we present a method for discovering word-like acoustic units in the continuous speech signal and grounding them to semantically relevant image regions. For example, our model is able to detect spoken instances of the word ‘lighthouse’ within an utterance and associate them with image regions containing lighthouses. We do not use any form of conventional automatic speech recognition, nor do we use any text transcriptions or conventional linguistic annotations. Our model effectively implements a form of spoken language acquisition, in which the computer learns not only to recognize word categories by sound, but also to enrich the words it learns with semantics by grounding them in images.</abstract>
<identifier type="citekey">harwath-glass-2017-learning</identifier>
<identifier type="doi">10.18653/v1/P17-1047</identifier>
<location>
<url>https://aclanthology.org/P17-1047/</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>506</start>
<end>517</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Word-Like Units from Joint Audio-Visual Analysis
%A Harwath, David
%A Glass, James
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F harwath-glass-2017-learning
%X Given a collection of images and spoken audio captions, we present a method for discovering word-like acoustic units in the continuous speech signal and grounding them to semantically relevant image regions. For example, our model is able to detect spoken instances of the word ‘lighthouse’ within an utterance and associate them with image regions containing lighthouses. We do not use any form of conventional automatic speech recognition, nor do we use any text transcriptions or conventional linguistic annotations. Our model effectively implements a form of spoken language acquisition, in which the computer learns not only to recognize word categories by sound, but also to enrich the words it learns with semantics by grounding them in images.
%R 10.18653/v1/P17-1047
%U https://aclanthology.org/P17-1047/
%U https://doi.org/10.18653/v1/P17-1047
%P 506-517
Markdown (Informal)
[Learning Word-Like Units from Joint Audio-Visual Analysis](https://aclanthology.org/P17-1047/) (Harwath & Glass, ACL 2017)
ACL
- David Harwath and James Glass. 2017. Learning Word-Like Units from Joint Audio-Visual Analysis. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 506–517, Vancouver, Canada. Association for Computational Linguistics.